init - 初始化项目
This commit is contained in:
190
modules/gapi/misc/python/test/test_gapi_core.py
Normal file
190
modules/gapi/misc/python/test/test_gapi_core.py
Normal file
@@ -0,0 +1,190 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
import os
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
|
||||
# Plaidml is an optional backend
|
||||
pkgs = [
|
||||
('ocl' , cv.gapi.core.ocl.kernels()),
|
||||
('cpu' , cv.gapi.core.cpu.kernels()),
|
||||
('fluid' , cv.gapi.core.fluid.kernels())
|
||||
# ('plaidml', cv.gapi.core.plaidml.kernels())
|
||||
]
|
||||
|
||||
|
||||
class gapi_core_test(NewOpenCVTests):
|
||||
|
||||
def test_add(self):
|
||||
# TODO: Extend to use any type and size here
|
||||
sz = (720, 1280)
|
||||
in1 = np.full(sz, 100)
|
||||
in2 = np.full(sz, 50)
|
||||
|
||||
# OpenCV
|
||||
expected = cv.add(in1, in2)
|
||||
|
||||
# G-API
|
||||
g_in1 = cv.GMat()
|
||||
g_in2 = cv.GMat()
|
||||
g_out = cv.gapi.add(g_in1, g_in2)
|
||||
comp = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(g_out))
|
||||
|
||||
for pkg_name, pkg in pkgs:
|
||||
actual = comp.apply(cv.gin(in1, in2), args=cv.compile_args(pkg))
|
||||
# Comparison
|
||||
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF),
|
||||
'Failed on ' + pkg_name + ' backend')
|
||||
self.assertEqual(expected.dtype, actual.dtype, 'Failed on ' + pkg_name + ' backend')
|
||||
|
||||
|
||||
def test_add_uint8(self):
|
||||
sz = (720, 1280)
|
||||
in1 = np.full(sz, 100, dtype=np.uint8)
|
||||
in2 = np.full(sz, 50 , dtype=np.uint8)
|
||||
|
||||
# OpenCV
|
||||
expected = cv.add(in1, in2)
|
||||
|
||||
# G-API
|
||||
g_in1 = cv.GMat()
|
||||
g_in2 = cv.GMat()
|
||||
g_out = cv.gapi.add(g_in1, g_in2)
|
||||
comp = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(g_out))
|
||||
|
||||
for pkg_name, pkg in pkgs:
|
||||
actual = comp.apply(cv.gin(in1, in2), args=cv.compile_args(pkg))
|
||||
# Comparison
|
||||
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF),
|
||||
'Failed on ' + pkg_name + ' backend')
|
||||
self.assertEqual(expected.dtype, actual.dtype, 'Failed on ' + pkg_name + ' backend')
|
||||
|
||||
|
||||
def test_mean(self):
|
||||
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
|
||||
in_mat = cv.imread(img_path)
|
||||
|
||||
# OpenCV
|
||||
expected = cv.mean(in_mat)
|
||||
|
||||
# G-API
|
||||
g_in = cv.GMat()
|
||||
g_out = cv.gapi.mean(g_in)
|
||||
comp = cv.GComputation(g_in, g_out)
|
||||
|
||||
for pkg_name, pkg in pkgs:
|
||||
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
|
||||
# Comparison
|
||||
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF),
|
||||
'Failed on ' + pkg_name + ' backend')
|
||||
|
||||
|
||||
def test_split3(self):
|
||||
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
|
||||
in_mat = cv.imread(img_path)
|
||||
|
||||
# OpenCV
|
||||
expected = cv.split(in_mat)
|
||||
|
||||
# G-API
|
||||
g_in = cv.GMat()
|
||||
b, g, r = cv.gapi.split3(g_in)
|
||||
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(b, g, r))
|
||||
|
||||
for pkg_name, pkg in pkgs:
|
||||
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
|
||||
# Comparison
|
||||
for e, a in zip(expected, actual):
|
||||
self.assertEqual(0.0, cv.norm(e, a, cv.NORM_INF),
|
||||
'Failed on ' + pkg_name + ' backend')
|
||||
self.assertEqual(e.dtype, a.dtype, 'Failed on ' + pkg_name + ' backend')
|
||||
|
||||
|
||||
def test_threshold(self):
|
||||
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
|
||||
in_mat = cv.cvtColor(cv.imread(img_path), cv.COLOR_RGB2GRAY)
|
||||
maxv = (30, 30)
|
||||
|
||||
# OpenCV
|
||||
expected_thresh, expected_mat = cv.threshold(in_mat, maxv[0], maxv[0], cv.THRESH_TRIANGLE)
|
||||
|
||||
# G-API
|
||||
g_in = cv.GMat()
|
||||
g_sc = cv.GScalar()
|
||||
mat, threshold = cv.gapi.threshold(g_in, g_sc, cv.THRESH_TRIANGLE)
|
||||
comp = cv.GComputation(cv.GIn(g_in, g_sc), cv.GOut(mat, threshold))
|
||||
|
||||
for pkg_name, pkg in pkgs:
|
||||
actual_mat, actual_thresh = comp.apply(cv.gin(in_mat, maxv), args=cv.compile_args(pkg))
|
||||
# Comparison
|
||||
self.assertEqual(0.0, cv.norm(expected_mat, actual_mat, cv.NORM_INF),
|
||||
'Failed on ' + pkg_name + ' backend')
|
||||
self.assertEqual(expected_mat.dtype, actual_mat.dtype,
|
||||
'Failed on ' + pkg_name + ' backend')
|
||||
self.assertEqual(expected_thresh, actual_thresh[0],
|
||||
'Failed on ' + pkg_name + ' backend')
|
||||
|
||||
def test_kmeans(self):
|
||||
# K-means params
|
||||
count = 100
|
||||
sz = (count, 2)
|
||||
in_mat = np.random.random(sz).astype(np.float32)
|
||||
K = 5
|
||||
flags = cv.KMEANS_RANDOM_CENTERS
|
||||
attempts = 1;
|
||||
criteria = (cv.TERM_CRITERIA_MAX_ITER + cv.TERM_CRITERIA_EPS, 30, 0)
|
||||
|
||||
# G-API
|
||||
g_in = cv.GMat()
|
||||
compactness, out_labels, centers = cv.gapi.kmeans(g_in, K, criteria, attempts, flags)
|
||||
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(compactness, out_labels, centers))
|
||||
|
||||
compact, labels, centers = comp.apply(cv.gin(in_mat))
|
||||
|
||||
# Assert
|
||||
self.assertTrue(compact >= 0)
|
||||
self.assertEqual(sz[0], labels.shape[0])
|
||||
self.assertEqual(1, labels.shape[1])
|
||||
self.assertTrue(labels.size != 0)
|
||||
self.assertEqual(centers.shape[1], sz[1]);
|
||||
self.assertEqual(centers.shape[0], K);
|
||||
self.assertTrue(centers.size != 0);
|
||||
|
||||
|
||||
def generate_random_points(self, sz):
|
||||
arr = np.random.random(sz).astype(np.float32).T
|
||||
return list(zip(arr[0], arr[1]))
|
||||
|
||||
|
||||
def test_kmeans_2d(self):
|
||||
# K-means 2D params
|
||||
count = 100
|
||||
sz = (count, 2)
|
||||
amount = sz[0]
|
||||
K = 5
|
||||
flags = cv.KMEANS_RANDOM_CENTERS
|
||||
attempts = 1;
|
||||
criteria = (cv.TERM_CRITERIA_MAX_ITER + cv.TERM_CRITERIA_EPS, 30, 0);
|
||||
in_vector = self.generate_random_points(sz)
|
||||
in_labels = []
|
||||
|
||||
# G-API
|
||||
data = cv.GArrayT(cv.gapi.CV_POINT2F)
|
||||
best_labels = cv.GArrayT(cv.gapi.CV_INT)
|
||||
|
||||
compactness, out_labels, centers = cv.gapi.kmeans(data, K, best_labels, criteria, attempts, flags);
|
||||
comp = cv.GComputation(cv.GIn(data, best_labels), cv.GOut(compactness, out_labels, centers));
|
||||
|
||||
compact, labels, centers = comp.apply(cv.gin(in_vector, in_labels));
|
||||
|
||||
# Assert
|
||||
self.assertTrue(compact >= 0)
|
||||
self.assertEqual(amount, len(labels))
|
||||
self.assertEqual(K, len(centers))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
NewOpenCVTests.bootstrap()
|
||||
106
modules/gapi/misc/python/test/test_gapi_imgproc.py
Normal file
106
modules/gapi/misc/python/test/test_gapi_imgproc.py
Normal file
@@ -0,0 +1,106 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
import os
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
|
||||
# Plaidml is an optional backend
|
||||
pkgs = [
|
||||
('ocl' , cv.gapi.core.ocl.kernels()),
|
||||
('cpu' , cv.gapi.core.cpu.kernels()),
|
||||
('fluid' , cv.gapi.core.fluid.kernels())
|
||||
# ('plaidml', cv.gapi.core.plaidml.kernels())
|
||||
]
|
||||
|
||||
|
||||
class gapi_imgproc_test(NewOpenCVTests):
|
||||
|
||||
def test_good_features_to_track(self):
|
||||
# TODO: Extend to use any type and size here
|
||||
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
|
||||
in1 = cv.cvtColor(cv.imread(img_path), cv.COLOR_RGB2GRAY)
|
||||
|
||||
# NB: goodFeaturesToTrack configuration
|
||||
max_corners = 50
|
||||
quality_lvl = 0.01
|
||||
min_distance = 10
|
||||
block_sz = 3
|
||||
use_harris_detector = True
|
||||
k = 0.04
|
||||
mask = None
|
||||
|
||||
# OpenCV
|
||||
expected = cv.goodFeaturesToTrack(in1, max_corners, quality_lvl,
|
||||
min_distance, mask=mask,
|
||||
blockSize=block_sz, useHarrisDetector=use_harris_detector, k=k)
|
||||
|
||||
# G-API
|
||||
g_in = cv.GMat()
|
||||
g_out = cv.gapi.goodFeaturesToTrack(g_in, max_corners, quality_lvl,
|
||||
min_distance, mask, block_sz, use_harris_detector, k)
|
||||
|
||||
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out))
|
||||
|
||||
for pkg_name, pkg in pkgs:
|
||||
actual = comp.apply(cv.gin(in1), args=cv.compile_args(pkg))
|
||||
# NB: OpenCV & G-API have different output shapes:
|
||||
# OpenCV - (num_points, 1, 2)
|
||||
# G-API - (num_points, 2)
|
||||
# Comparison
|
||||
self.assertEqual(0.0, cv.norm(expected.flatten(),
|
||||
np.array(actual, dtype=np.float32).flatten(),
|
||||
cv.NORM_INF),
|
||||
'Failed on ' + pkg_name + ' backend')
|
||||
|
||||
|
||||
def test_rgb2gray(self):
|
||||
# TODO: Extend to use any type and size here
|
||||
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
|
||||
in1 = cv.imread(img_path)
|
||||
|
||||
# OpenCV
|
||||
expected = cv.cvtColor(in1, cv.COLOR_RGB2GRAY)
|
||||
|
||||
# G-API
|
||||
g_in = cv.GMat()
|
||||
g_out = cv.gapi.RGB2Gray(g_in)
|
||||
|
||||
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out))
|
||||
|
||||
for pkg_name, pkg in pkgs:
|
||||
actual = comp.apply(cv.gin(in1), args=cv.compile_args(pkg))
|
||||
# Comparison
|
||||
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF),
|
||||
'Failed on ' + pkg_name + ' backend')
|
||||
|
||||
|
||||
def test_bounding_rect(self):
|
||||
sz = 1280
|
||||
fscale = 256
|
||||
|
||||
def sample_value(fscale):
|
||||
return np.random.uniform(0, 255 * fscale) / fscale
|
||||
|
||||
points = np.array([(sample_value(fscale), sample_value(fscale)) for _ in range(1280)], np.float32)
|
||||
|
||||
# OpenCV
|
||||
expected = cv.boundingRect(points)
|
||||
|
||||
# G-API
|
||||
g_in = cv.GMat()
|
||||
g_out = cv.gapi.boundingRect(g_in)
|
||||
|
||||
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out))
|
||||
|
||||
for pkg_name, pkg in pkgs:
|
||||
actual = comp.apply(cv.gin(points), args=cv.compile_args(pkg))
|
||||
# Comparison
|
||||
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF),
|
||||
'Failed on ' + pkg_name + ' backend')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
NewOpenCVTests.bootstrap()
|
||||
321
modules/gapi/misc/python/test/test_gapi_infer.py
Normal file
321
modules/gapi/misc/python/test/test_gapi_infer.py
Normal file
@@ -0,0 +1,321 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
import os
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
|
||||
class test_gapi_infer(NewOpenCVTests):
|
||||
|
||||
def infer_reference_network(self, model_path, weights_path, img):
|
||||
net = cv.dnn.readNetFromModelOptimizer(model_path, weights_path)
|
||||
net.setPreferableBackend(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE)
|
||||
net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
|
||||
|
||||
blob = cv.dnn.blobFromImage(img)
|
||||
|
||||
net.setInput(blob)
|
||||
return net.forward(net.getUnconnectedOutLayersNames())
|
||||
|
||||
|
||||
def make_roi(self, img, roi):
|
||||
return img[roi[1]:roi[1] + roi[3], roi[0]:roi[0] + roi[2], ...]
|
||||
|
||||
|
||||
def test_age_gender_infer(self):
|
||||
# NB: Check IE
|
||||
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE):
|
||||
return
|
||||
|
||||
root_path = '/omz_intel_models/intel/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013'
|
||||
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
|
||||
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
|
||||
device_id = 'CPU'
|
||||
|
||||
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
|
||||
img = cv.resize(cv.imread(img_path), (62,62))
|
||||
|
||||
# OpenCV DNN
|
||||
dnn_age, dnn_gender = self.infer_reference_network(model_path, weights_path, img)
|
||||
|
||||
# OpenCV G-API
|
||||
g_in = cv.GMat()
|
||||
inputs = cv.GInferInputs()
|
||||
inputs.setInput('data', g_in)
|
||||
|
||||
outputs = cv.gapi.infer("net", inputs)
|
||||
age_g = outputs.at("age_conv3")
|
||||
gender_g = outputs.at("prob")
|
||||
|
||||
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(age_g, gender_g))
|
||||
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id)
|
||||
|
||||
gapi_age, gapi_gender = comp.apply(cv.gin(img), args=cv.compile_args(cv.gapi.networks(pp)))
|
||||
|
||||
# Check
|
||||
self.assertEqual(0.0, cv.norm(dnn_gender, gapi_gender, cv.NORM_INF))
|
||||
self.assertEqual(0.0, cv.norm(dnn_age, gapi_age, cv.NORM_INF))
|
||||
|
||||
|
||||
def test_age_gender_infer_roi(self):
|
||||
# NB: Check IE
|
||||
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE):
|
||||
return
|
||||
|
||||
root_path = '/omz_intel_models/intel/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013'
|
||||
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
|
||||
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
|
||||
device_id = 'CPU'
|
||||
|
||||
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
|
||||
img = cv.imread(img_path)
|
||||
roi = (10, 10, 62, 62)
|
||||
|
||||
# OpenCV DNN
|
||||
dnn_age, dnn_gender = self.infer_reference_network(model_path,
|
||||
weights_path,
|
||||
self.make_roi(img, roi))
|
||||
|
||||
# OpenCV G-API
|
||||
g_in = cv.GMat()
|
||||
g_roi = cv.GOpaqueT(cv.gapi.CV_RECT)
|
||||
inputs = cv.GInferInputs()
|
||||
inputs.setInput('data', g_in)
|
||||
|
||||
outputs = cv.gapi.infer("net", g_roi, inputs)
|
||||
age_g = outputs.at("age_conv3")
|
||||
gender_g = outputs.at("prob")
|
||||
|
||||
comp = cv.GComputation(cv.GIn(g_in, g_roi), cv.GOut(age_g, gender_g))
|
||||
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id)
|
||||
|
||||
gapi_age, gapi_gender = comp.apply(cv.gin(img, roi), args=cv.compile_args(cv.gapi.networks(pp)))
|
||||
|
||||
# Check
|
||||
self.assertEqual(0.0, cv.norm(dnn_gender, gapi_gender, cv.NORM_INF))
|
||||
self.assertEqual(0.0, cv.norm(dnn_age, gapi_age, cv.NORM_INF))
|
||||
|
||||
|
||||
def test_age_gender_infer_roi_list(self):
|
||||
# NB: Check IE
|
||||
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE):
|
||||
return
|
||||
|
||||
root_path = '/omz_intel_models/intel/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013'
|
||||
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
|
||||
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
|
||||
device_id = 'CPU'
|
||||
|
||||
rois = [(10, 15, 62, 62), (23, 50, 62, 62), (14, 100, 62, 62), (80, 50, 62, 62)]
|
||||
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
|
||||
img = cv.imread(img_path)
|
||||
|
||||
# OpenCV DNN
|
||||
dnn_age_list = []
|
||||
dnn_gender_list = []
|
||||
for roi in rois:
|
||||
age, gender = self.infer_reference_network(model_path,
|
||||
weights_path,
|
||||
self.make_roi(img, roi))
|
||||
dnn_age_list.append(age)
|
||||
dnn_gender_list.append(gender)
|
||||
|
||||
# OpenCV G-API
|
||||
g_in = cv.GMat()
|
||||
g_rois = cv.GArrayT(cv.gapi.CV_RECT)
|
||||
inputs = cv.GInferInputs()
|
||||
inputs.setInput('data', g_in)
|
||||
|
||||
outputs = cv.gapi.infer("net", g_rois, inputs)
|
||||
age_g = outputs.at("age_conv3")
|
||||
gender_g = outputs.at("prob")
|
||||
|
||||
comp = cv.GComputation(cv.GIn(g_in, g_rois), cv.GOut(age_g, gender_g))
|
||||
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id)
|
||||
|
||||
gapi_age_list, gapi_gender_list = comp.apply(cv.gin(img, rois),
|
||||
args=cv.compile_args(cv.gapi.networks(pp)))
|
||||
|
||||
# Check
|
||||
for gapi_age, gapi_gender, dnn_age, dnn_gender in zip(gapi_age_list,
|
||||
gapi_gender_list,
|
||||
dnn_age_list,
|
||||
dnn_gender_list):
|
||||
self.assertEqual(0.0, cv.norm(dnn_gender, gapi_gender, cv.NORM_INF))
|
||||
self.assertEqual(0.0, cv.norm(dnn_age, gapi_age, cv.NORM_INF))
|
||||
|
||||
|
||||
def test_age_gender_infer2_roi(self):
|
||||
# NB: Check IE
|
||||
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE):
|
||||
return
|
||||
|
||||
root_path = '/omz_intel_models/intel/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013'
|
||||
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
|
||||
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
|
||||
device_id = 'CPU'
|
||||
|
||||
rois = [(10, 15, 62, 62), (23, 50, 62, 62), (14, 100, 62, 62), (80, 50, 62, 62)]
|
||||
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
|
||||
img = cv.imread(img_path)
|
||||
|
||||
# OpenCV DNN
|
||||
dnn_age_list = []
|
||||
dnn_gender_list = []
|
||||
for roi in rois:
|
||||
age, gender = self.infer_reference_network(model_path,
|
||||
weights_path,
|
||||
self.make_roi(img, roi))
|
||||
dnn_age_list.append(age)
|
||||
dnn_gender_list.append(gender)
|
||||
|
||||
# OpenCV G-API
|
||||
g_in = cv.GMat()
|
||||
g_rois = cv.GArrayT(cv.gapi.CV_RECT)
|
||||
inputs = cv.GInferListInputs()
|
||||
inputs.setInput('data', g_rois)
|
||||
|
||||
outputs = cv.gapi.infer2("net", g_in, inputs)
|
||||
age_g = outputs.at("age_conv3")
|
||||
gender_g = outputs.at("prob")
|
||||
|
||||
comp = cv.GComputation(cv.GIn(g_in, g_rois), cv.GOut(age_g, gender_g))
|
||||
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id)
|
||||
|
||||
gapi_age_list, gapi_gender_list = comp.apply(cv.gin(img, rois),
|
||||
args=cv.compile_args(cv.gapi.networks(pp)))
|
||||
|
||||
# Check
|
||||
for gapi_age, gapi_gender, dnn_age, dnn_gender in zip(gapi_age_list,
|
||||
gapi_gender_list,
|
||||
dnn_age_list,
|
||||
dnn_gender_list):
|
||||
self.assertEqual(0.0, cv.norm(dnn_gender, gapi_gender, cv.NORM_INF))
|
||||
self.assertEqual(0.0, cv.norm(dnn_age, gapi_age, cv.NORM_INF))
|
||||
|
||||
|
||||
|
||||
def test_person_detection_retail_0013(self):
|
||||
# NB: Check IE
|
||||
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE):
|
||||
return
|
||||
|
||||
root_path = '/omz_intel_models/intel/person-detection-retail-0013/FP32/person-detection-retail-0013'
|
||||
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
|
||||
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
|
||||
img_path = self.find_file('gpu/lbpcascade/er.png', [os.environ.get('OPENCV_TEST_DATA_PATH')])
|
||||
device_id = 'CPU'
|
||||
img = cv.resize(cv.imread(img_path), (544, 320))
|
||||
|
||||
# OpenCV DNN
|
||||
net = cv.dnn.readNetFromModelOptimizer(model_path, weights_path)
|
||||
net.setPreferableBackend(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE)
|
||||
net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
|
||||
|
||||
blob = cv.dnn.blobFromImage(img)
|
||||
|
||||
def parseSSD(detections, size):
|
||||
h, w = size
|
||||
bboxes = []
|
||||
detections = detections.reshape(-1, 7)
|
||||
for sample_id, class_id, confidence, xmin, ymin, xmax, ymax in detections:
|
||||
if confidence >= 0.5:
|
||||
x = int(xmin * w)
|
||||
y = int(ymin * h)
|
||||
width = int(xmax * w - x)
|
||||
height = int(ymax * h - y)
|
||||
bboxes.append((x, y, width, height))
|
||||
|
||||
return bboxes
|
||||
|
||||
net.setInput(blob)
|
||||
dnn_detections = net.forward()
|
||||
dnn_boxes = parseSSD(np.array(dnn_detections), img.shape[:2])
|
||||
|
||||
# OpenCV G-API
|
||||
g_in = cv.GMat()
|
||||
inputs = cv.GInferInputs()
|
||||
inputs.setInput('data', g_in)
|
||||
|
||||
g_sz = cv.gapi.streaming.size(g_in)
|
||||
outputs = cv.gapi.infer("net", inputs)
|
||||
detections = outputs.at("detection_out")
|
||||
bboxes = cv.gapi.parseSSD(detections, g_sz, 0.5, False, False)
|
||||
|
||||
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(bboxes))
|
||||
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id)
|
||||
|
||||
gapi_age, gapi_gender = comp.apply(cv.gin(img), args=cv.compile_args(cv.gapi.networks(pp)))
|
||||
|
||||
gapi_boxes = comp.apply(cv.gin(img.astype(np.float32)),
|
||||
args=cv.compile_args(cv.gapi.networks(pp)))
|
||||
|
||||
# Comparison
|
||||
self.assertEqual(0.0, cv.norm(np.array(dnn_boxes).flatten(),
|
||||
np.array(gapi_boxes).flatten(),
|
||||
cv.NORM_INF))
|
||||
|
||||
|
||||
def test_person_detection_retail_0013(self):
|
||||
# NB: Check IE
|
||||
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE):
|
||||
return
|
||||
|
||||
root_path = '/omz_intel_models/intel/person-detection-retail-0013/FP32/person-detection-retail-0013'
|
||||
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
|
||||
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
|
||||
img_path = self.find_file('gpu/lbpcascade/er.png', [os.environ.get('OPENCV_TEST_DATA_PATH')])
|
||||
device_id = 'CPU'
|
||||
img = cv.resize(cv.imread(img_path), (544, 320))
|
||||
|
||||
# OpenCV DNN
|
||||
net = cv.dnn.readNetFromModelOptimizer(model_path, weights_path)
|
||||
net.setPreferableBackend(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE)
|
||||
net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
|
||||
|
||||
blob = cv.dnn.blobFromImage(img)
|
||||
|
||||
def parseSSD(detections, size):
|
||||
h, w = size
|
||||
bboxes = []
|
||||
detections = detections.reshape(-1, 7)
|
||||
for sample_id, class_id, confidence, xmin, ymin, xmax, ymax in detections:
|
||||
if confidence >= 0.5:
|
||||
x = int(xmin * w)
|
||||
y = int(ymin * h)
|
||||
width = int(xmax * w - x)
|
||||
height = int(ymax * h - y)
|
||||
bboxes.append((x, y, width, height))
|
||||
|
||||
return bboxes
|
||||
|
||||
net.setInput(blob)
|
||||
dnn_detections = net.forward()
|
||||
dnn_boxes = parseSSD(np.array(dnn_detections), img.shape[:2])
|
||||
|
||||
# OpenCV G-API
|
||||
g_in = cv.GMat()
|
||||
inputs = cv.GInferInputs()
|
||||
inputs.setInput('data', g_in)
|
||||
|
||||
g_sz = cv.gapi.streaming.size(g_in)
|
||||
outputs = cv.gapi.infer("net", inputs)
|
||||
detections = outputs.at("detection_out")
|
||||
bboxes = cv.gapi.parseSSD(detections, g_sz, 0.5, False, False)
|
||||
|
||||
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(bboxes))
|
||||
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id)
|
||||
|
||||
gapi_boxes = comp.apply(cv.gin(img.astype(np.float32)),
|
||||
args=cv.compile_args(cv.gapi.networks(pp)))
|
||||
|
||||
# Comparison
|
||||
self.assertEqual(0.0, cv.norm(np.array(dnn_boxes).flatten(),
|
||||
np.array(gapi_boxes).flatten(),
|
||||
cv.NORM_INF))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
NewOpenCVTests.bootstrap()
|
||||
526
modules/gapi/misc/python/test/test_gapi_sample_pipelines.py
Normal file
526
modules/gapi/misc/python/test/test_gapi_sample_pipelines.py
Normal file
@@ -0,0 +1,526 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
import os
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
|
||||
# Plaidml is an optional backend
|
||||
pkgs = [
|
||||
('ocl' , cv.gapi.core.ocl.kernels()),
|
||||
('cpu' , cv.gapi.core.cpu.kernels()),
|
||||
('fluid' , cv.gapi.core.fluid.kernels())
|
||||
# ('plaidml', cv.gapi.core.plaidml.kernels())
|
||||
]
|
||||
|
||||
# Test output GMat.
|
||||
def custom_add(img1, img2, dtype):
|
||||
return cv.add(img1, img2)
|
||||
|
||||
# Test output GScalar.
|
||||
def custom_mean(img):
|
||||
return cv.mean(img)
|
||||
|
||||
# Test output tuple of GMat's.
|
||||
def custom_split3(img):
|
||||
# NB: cv.split return list but g-api requires tuple in multiple output case
|
||||
return tuple(cv.split(img))
|
||||
|
||||
# Test output GOpaque.
|
||||
def custom_size(img):
|
||||
# NB: Take only H, W, because the operation should return cv::Size which is 2D.
|
||||
return img.shape[:2]
|
||||
|
||||
# Test output GArray.
|
||||
def custom_goodFeaturesToTrack(img, max_corners, quality_lvl,
|
||||
min_distance, mask, block_sz,
|
||||
use_harris_detector, k):
|
||||
features = cv.goodFeaturesToTrack(img, max_corners, quality_lvl,
|
||||
min_distance, mask=mask,
|
||||
blockSize=block_sz,
|
||||
useHarrisDetector=use_harris_detector, k=k)
|
||||
# NB: The operation output is cv::GArray<cv::Pointf>, so it should be mapped
|
||||
# to python paramaters like this: [(1.2, 3.4), (5.2, 3.2)], because the cv::Point2f
|
||||
# according to opencv rules mapped to the tuple and cv::GArray<> mapped to the list.
|
||||
# OpenCV returns np.array with shape (n_features, 1, 2), so let's to convert it to list
|
||||
# tuples with size - n_features.
|
||||
features = list(map(tuple, features.reshape(features.shape[0], -1)))
|
||||
return features
|
||||
|
||||
# Test input scalar.
|
||||
def custom_addC(img, sc, dtype):
|
||||
# NB: dtype is just ignored in this implementation.
|
||||
# More over from G-API kernel got scalar as tuples with 4 elements
|
||||
# where the last element is equal to zero, just cut him for broadcasting.
|
||||
return img + np.array(sc, dtype=np.uint8)[:-1]
|
||||
|
||||
|
||||
# Test input opaque.
|
||||
def custom_sizeR(rect):
|
||||
# NB: rect - is tuple (x, y, h, w)
|
||||
return (rect[2], rect[3])
|
||||
|
||||
# Test input array.
|
||||
def custom_boundingRect(array):
|
||||
# NB: OpenCV - numpy array (n_points x 2).
|
||||
# G-API - array of tuples (n_points).
|
||||
return cv.boundingRect(np.array(array))
|
||||
|
||||
# Test input mat
|
||||
def add(g_in1, g_in2, dtype):
|
||||
def custom_add_meta(img_desc1, img_desc2, dtype):
|
||||
return img_desc1
|
||||
|
||||
return cv.gapi.wip.op('custom.add', custom_add_meta, g_in1, g_in2, dtype).getGMat()
|
||||
|
||||
|
||||
# Test multiple output mat
|
||||
def split3(g_in):
|
||||
def custom_split3_meta(img_desc):
|
||||
out_desc = img_desc.withType(img_desc.depth, 1)
|
||||
return out_desc, out_desc, out_desc
|
||||
|
||||
op = cv.gapi.wip.op('custom.split3', custom_split3_meta, g_in)
|
||||
|
||||
ch1 = op.getGMat()
|
||||
ch2 = op.getGMat()
|
||||
ch3 = op.getGMat()
|
||||
|
||||
return ch1, ch2, ch3
|
||||
|
||||
# Test output scalar
|
||||
def mean(g_in):
|
||||
def custom_mean_meta(img_desc):
|
||||
return cv.empty_scalar_desc()
|
||||
|
||||
op = cv.gapi.wip.op('custom.mean', custom_mean_meta, g_in)
|
||||
return op.getGScalar()
|
||||
|
||||
|
||||
# Test input scalar
|
||||
def addC(g_in, g_sc, dtype):
|
||||
def custom_addC_meta(img_desc, sc_desc, dtype):
|
||||
return img_desc
|
||||
|
||||
op = cv.gapi.wip.op('custom.addC', custom_addC_meta, g_in, g_sc, dtype)
|
||||
return op.getGMat()
|
||||
|
||||
|
||||
# Test output opaque.
|
||||
def size(g_in):
|
||||
def custom_size_meta(img_desc):
|
||||
return cv.empty_gopaque_desc()
|
||||
|
||||
op = cv.gapi.wip.op('custom.size', custom_size_meta, g_in)
|
||||
return op.getGOpaque(cv.gapi.CV_SIZE)
|
||||
|
||||
|
||||
# Test input opaque.
|
||||
def sizeR(g_rect):
|
||||
def custom_sizeR_meta(opaque_desc):
|
||||
return cv.empty_gopaque_desc()
|
||||
|
||||
op = cv.gapi.wip.op('custom.sizeR', custom_sizeR_meta, g_rect)
|
||||
return op.getGOpaque(cv.gapi.CV_SIZE)
|
||||
|
||||
|
||||
# Test input array.
|
||||
def boundingRect(g_array):
|
||||
def custom_boundingRect_meta(array_desc):
|
||||
return cv.empty_gopaque_desc()
|
||||
|
||||
op = cv.gapi.wip.op('custom.boundingRect', custom_boundingRect_meta, g_array)
|
||||
return op.getGOpaque(cv.gapi.CV_RECT)
|
||||
|
||||
|
||||
# Test output GArray.
|
||||
def goodFeaturesToTrack(g_in, max_corners, quality_lvl,
|
||||
min_distance, mask, block_sz,
|
||||
use_harris_detector, k):
|
||||
def custom_goodFeaturesToTrack_meta(img_desc, max_corners, quality_lvl,
|
||||
min_distance, mask, block_sz, use_harris_detector, k):
|
||||
return cv.empty_array_desc()
|
||||
|
||||
op = cv.gapi.wip.op('custom.goodFeaturesToTrack', custom_goodFeaturesToTrack_meta, g_in,
|
||||
max_corners, quality_lvl, min_distance, mask, block_sz, use_harris_detector, k)
|
||||
return op.getGArray(cv.gapi.CV_POINT2F)
|
||||
|
||||
|
||||
class gapi_sample_pipelines(NewOpenCVTests):
|
||||
|
||||
# NB: This test check multiple outputs for operation
|
||||
def test_mean_over_r(self):
|
||||
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
|
||||
in_mat = cv.imread(img_path)
|
||||
|
||||
# # OpenCV
|
||||
_, _, r_ch = cv.split(in_mat)
|
||||
expected = cv.mean(r_ch)
|
||||
|
||||
# G-API
|
||||
g_in = cv.GMat()
|
||||
b, g, r = cv.gapi.split3(g_in)
|
||||
g_out = cv.gapi.mean(r)
|
||||
comp = cv.GComputation(g_in, g_out)
|
||||
|
||||
for pkg_name, pkg in pkgs:
|
||||
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
|
||||
# Comparison
|
||||
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF),
|
||||
'Failed on ' + pkg_name + ' backend')
|
||||
|
||||
|
||||
def test_custom_mean(self):
|
||||
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
|
||||
in_mat = cv.imread(img_path)
|
||||
|
||||
# OpenCV
|
||||
expected = cv.mean(in_mat)
|
||||
|
||||
# G-API
|
||||
g_in = cv.GMat()
|
||||
g_out = cv.gapi.mean(g_in)
|
||||
|
||||
comp = cv.GComputation(g_in, g_out)
|
||||
|
||||
pkg = cv.gapi.wip.kernels((custom_mean, 'org.opencv.core.math.mean'))
|
||||
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
|
||||
|
||||
# Comparison
|
||||
self.assertEqual(expected, actual)
|
||||
|
||||
|
||||
def test_custom_add(self):
|
||||
sz = (3, 3)
|
||||
in_mat1 = np.full(sz, 45, dtype=np.uint8)
|
||||
in_mat2 = np.full(sz, 50 , dtype=np.uint8)
|
||||
|
||||
# OpenCV
|
||||
expected = cv.add(in_mat1, in_mat2)
|
||||
|
||||
# G-API
|
||||
g_in1 = cv.GMat()
|
||||
g_in2 = cv.GMat()
|
||||
g_out = cv.gapi.add(g_in1, g_in2)
|
||||
comp = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(g_out))
|
||||
|
||||
pkg = cv.gapi.wip.kernels((custom_add, 'org.opencv.core.math.add'))
|
||||
actual = comp.apply(cv.gin(in_mat1, in_mat2), args=cv.compile_args(pkg))
|
||||
|
||||
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
|
||||
|
||||
|
||||
def test_custom_size(self):
|
||||
sz = (100, 150, 3)
|
||||
in_mat = np.full(sz, 45, dtype=np.uint8)
|
||||
|
||||
# OpenCV
|
||||
expected = (100, 150)
|
||||
|
||||
# G-API
|
||||
g_in = cv.GMat()
|
||||
g_sz = cv.gapi.streaming.size(g_in)
|
||||
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_sz))
|
||||
|
||||
pkg = cv.gapi.wip.kernels((custom_size, 'org.opencv.streaming.size'))
|
||||
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
|
||||
|
||||
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
|
||||
|
||||
|
||||
def test_custom_goodFeaturesToTrack(self):
|
||||
# G-API
|
||||
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
|
||||
in_mat = cv.cvtColor(cv.imread(img_path), cv.COLOR_RGB2GRAY)
|
||||
|
||||
# NB: goodFeaturesToTrack configuration
|
||||
max_corners = 50
|
||||
quality_lvl = 0.01
|
||||
min_distance = 10
|
||||
block_sz = 3
|
||||
use_harris_detector = True
|
||||
k = 0.04
|
||||
mask = None
|
||||
|
||||
# OpenCV
|
||||
expected = cv.goodFeaturesToTrack(in_mat, max_corners, quality_lvl,
|
||||
min_distance, mask=mask,
|
||||
blockSize=block_sz, useHarrisDetector=use_harris_detector, k=k)
|
||||
|
||||
# G-API
|
||||
g_in = cv.GMat()
|
||||
g_out = cv.gapi.goodFeaturesToTrack(g_in, max_corners, quality_lvl,
|
||||
min_distance, mask, block_sz, use_harris_detector, k)
|
||||
|
||||
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out))
|
||||
pkg = cv.gapi.wip.kernels((custom_goodFeaturesToTrack, 'org.opencv.imgproc.feature.goodFeaturesToTrack'))
|
||||
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
|
||||
|
||||
# NB: OpenCV & G-API have different output types.
|
||||
# OpenCV - numpy array with shape (num_points, 1, 2)
|
||||
# G-API - list of tuples with size - num_points
|
||||
# Comparison
|
||||
self.assertEqual(0.0, cv.norm(expected.flatten(),
|
||||
np.array(actual, dtype=np.float32).flatten(), cv.NORM_INF))
|
||||
|
||||
|
||||
def test_custom_addC(self):
|
||||
sz = (3, 3, 3)
|
||||
in_mat = np.full(sz, 45, dtype=np.uint8)
|
||||
sc = (50, 10, 20)
|
||||
|
||||
# Numpy reference, make array from sc to keep uint8 dtype.
|
||||
expected = in_mat + np.array(sc, dtype=np.uint8)
|
||||
|
||||
# G-API
|
||||
g_in = cv.GMat()
|
||||
g_sc = cv.GScalar()
|
||||
g_out = cv.gapi.addC(g_in, g_sc)
|
||||
comp = cv.GComputation(cv.GIn(g_in, g_sc), cv.GOut(g_out))
|
||||
|
||||
pkg = cv.gapi.wip.kernels((custom_addC, 'org.opencv.core.math.addC'))
|
||||
actual = comp.apply(cv.gin(in_mat, sc), args=cv.compile_args(pkg))
|
||||
|
||||
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
|
||||
|
||||
|
||||
def test_custom_sizeR(self):
|
||||
# x, y, h, w
|
||||
roi = (10, 15, 100, 150)
|
||||
|
||||
expected = (100, 150)
|
||||
|
||||
# G-API
|
||||
g_r = cv.GOpaqueT(cv.gapi.CV_RECT)
|
||||
g_sz = cv.gapi.streaming.size(g_r)
|
||||
comp = cv.GComputation(cv.GIn(g_r), cv.GOut(g_sz))
|
||||
|
||||
pkg = cv.gapi.wip.kernels((custom_sizeR, 'org.opencv.streaming.sizeR'))
|
||||
actual = comp.apply(cv.gin(roi), args=cv.compile_args(pkg))
|
||||
|
||||
# cv.norm works with tuples ?
|
||||
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
|
||||
|
||||
|
||||
def test_custom_boundingRect(self):
|
||||
points = [(0,0), (0,1), (1,0), (1,1)]
|
||||
|
||||
# OpenCV
|
||||
expected = cv.boundingRect(np.array(points))
|
||||
|
||||
# G-API
|
||||
g_pts = cv.GArrayT(cv.gapi.CV_POINT)
|
||||
g_br = cv.gapi.boundingRect(g_pts)
|
||||
comp = cv.GComputation(cv.GIn(g_pts), cv.GOut(g_br))
|
||||
|
||||
pkg = cv.gapi.wip.kernels((custom_boundingRect, 'org.opencv.imgproc.shape.boundingRectVector32S'))
|
||||
actual = comp.apply(cv.gin(points), args=cv.compile_args(pkg))
|
||||
|
||||
# cv.norm works with tuples ?
|
||||
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
|
||||
|
||||
|
||||
def test_multiple_custom_kernels(self):
|
||||
sz = (3, 3, 3)
|
||||
in_mat1 = np.full(sz, 45, dtype=np.uint8)
|
||||
in_mat2 = np.full(sz, 50 , dtype=np.uint8)
|
||||
|
||||
# OpenCV
|
||||
expected = cv.mean(cv.split(cv.add(in_mat1, in_mat2))[1])
|
||||
|
||||
# G-API
|
||||
g_in1 = cv.GMat()
|
||||
g_in2 = cv.GMat()
|
||||
g_sum = cv.gapi.add(g_in1, g_in2)
|
||||
g_b, g_r, g_g = cv.gapi.split3(g_sum)
|
||||
g_mean = cv.gapi.mean(g_b)
|
||||
|
||||
comp = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(g_mean))
|
||||
|
||||
|
||||
pkg = cv.gapi.wip.kernels((custom_add , 'org.opencv.core.math.add'),
|
||||
(custom_mean , 'org.opencv.core.math.mean'),
|
||||
(custom_split3, 'org.opencv.core.transform.split3'))
|
||||
|
||||
actual = comp.apply(cv.gin(in_mat1, in_mat2), args=cv.compile_args(pkg))
|
||||
|
||||
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
|
||||
|
||||
|
||||
def test_custom_op_add(self):
|
||||
sz = (3, 3)
|
||||
in_mat1 = np.full(sz, 45, dtype=np.uint8)
|
||||
in_mat2 = np.full(sz, 50, dtype=np.uint8)
|
||||
|
||||
# OpenCV
|
||||
expected = cv.add(in_mat1, in_mat2)
|
||||
|
||||
# G-API
|
||||
g_in1 = cv.GMat()
|
||||
g_in2 = cv.GMat()
|
||||
g_out = add(g_in1, g_in2, cv.CV_8UC1)
|
||||
|
||||
comp = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(g_out))
|
||||
|
||||
pkg = cv.gapi.wip.kernels((custom_add, 'custom.add'))
|
||||
actual = comp.apply(cv.gin(in_mat1, in_mat2), args=cv.compile_args(pkg))
|
||||
|
||||
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
|
||||
|
||||
|
||||
def test_custom_op_split3(self):
|
||||
sz = (4, 4)
|
||||
in_ch1 = np.full(sz, 1, dtype=np.uint8)
|
||||
in_ch2 = np.full(sz, 2, dtype=np.uint8)
|
||||
in_ch3 = np.full(sz, 3, dtype=np.uint8)
|
||||
# H x W x C
|
||||
in_mat = np.stack((in_ch1, in_ch2, in_ch3), axis=2)
|
||||
|
||||
# G-API
|
||||
g_in = cv.GMat()
|
||||
g_ch1, g_ch2, g_ch3 = split3(g_in)
|
||||
|
||||
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_ch1, g_ch2, g_ch3))
|
||||
|
||||
pkg = cv.gapi.wip.kernels((custom_split3, 'custom.split3'))
|
||||
ch1, ch2, ch3 = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
|
||||
|
||||
self.assertEqual(0.0, cv.norm(in_ch1, ch1, cv.NORM_INF))
|
||||
self.assertEqual(0.0, cv.norm(in_ch2, ch2, cv.NORM_INF))
|
||||
self.assertEqual(0.0, cv.norm(in_ch3, ch3, cv.NORM_INF))
|
||||
|
||||
|
||||
def test_custom_op_mean(self):
|
||||
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
|
||||
in_mat = cv.imread(img_path)
|
||||
|
||||
# OpenCV
|
||||
expected = cv.mean(in_mat)
|
||||
|
||||
# G-API
|
||||
g_in = cv.GMat()
|
||||
g_out = mean(g_in)
|
||||
|
||||
comp = cv.GComputation(g_in, g_out)
|
||||
|
||||
pkg = cv.gapi.wip.kernels((custom_mean, 'custom.mean'))
|
||||
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
|
||||
|
||||
# Comparison
|
||||
self.assertEqual(expected, actual)
|
||||
|
||||
|
||||
def test_custom_op_addC(self):
|
||||
sz = (3, 3, 3)
|
||||
in_mat = np.full(sz, 45, dtype=np.uint8)
|
||||
sc = (50, 10, 20)
|
||||
|
||||
# Numpy reference, make array from sc to keep uint8 dtype.
|
||||
expected = in_mat + np.array(sc, dtype=np.uint8)
|
||||
|
||||
# G-API
|
||||
g_in = cv.GMat()
|
||||
g_sc = cv.GScalar()
|
||||
g_out = addC(g_in, g_sc, cv.CV_8UC1)
|
||||
comp = cv.GComputation(cv.GIn(g_in, g_sc), cv.GOut(g_out))
|
||||
|
||||
pkg = cv.gapi.wip.kernels((custom_addC, 'custom.addC'))
|
||||
actual = comp.apply(cv.gin(in_mat, sc), args=cv.compile_args(pkg))
|
||||
|
||||
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
|
||||
|
||||
|
||||
def test_custom_op_size(self):
|
||||
sz = (100, 150, 3)
|
||||
in_mat = np.full(sz, 45, dtype=np.uint8)
|
||||
|
||||
# Open_cV
|
||||
expected = (100, 150)
|
||||
|
||||
# G-API
|
||||
g_in = cv.GMat()
|
||||
g_sz = size(g_in)
|
||||
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_sz))
|
||||
|
||||
pkg = cv.gapi.wip.kernels((custom_size, 'custom.size'))
|
||||
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
|
||||
|
||||
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
|
||||
|
||||
|
||||
def test_custom_op_sizeR(self):
|
||||
# x, y, h, w
|
||||
roi = (10, 15, 100, 150)
|
||||
|
||||
expected = (100, 150)
|
||||
|
||||
# G-API
|
||||
g_r = cv.GOpaqueT(cv.gapi.CV_RECT)
|
||||
g_sz = sizeR(g_r)
|
||||
comp = cv.GComputation(cv.GIn(g_r), cv.GOut(g_sz))
|
||||
|
||||
pkg = cv.gapi.wip.kernels((custom_sizeR, 'custom.sizeR'))
|
||||
actual = comp.apply(cv.gin(roi), args=cv.compile_args(pkg))
|
||||
|
||||
# cv.norm works with tuples ?
|
||||
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
|
||||
|
||||
|
||||
def test_custom_op_boundingRect(self):
|
||||
points = [(0,0), (0,1), (1,0), (1,1)]
|
||||
|
||||
# OpenCV
|
||||
expected = cv.boundingRect(np.array(points))
|
||||
|
||||
# G-API
|
||||
g_pts = cv.GArrayT(cv.gapi.CV_POINT)
|
||||
g_br = boundingRect(g_pts)
|
||||
comp = cv.GComputation(cv.GIn(g_pts), cv.GOut(g_br))
|
||||
|
||||
pkg = cv.gapi.wip.kernels((custom_boundingRect, 'custom.boundingRect'))
|
||||
actual = comp.apply(cv.gin(points), args=cv.compile_args(pkg))
|
||||
|
||||
# cv.norm works with tuples ?
|
||||
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
|
||||
|
||||
|
||||
def test_custom_op_goodFeaturesToTrack(self):
|
||||
# G-API
|
||||
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
|
||||
in_mat = cv.cvtColor(cv.imread(img_path), cv.COLOR_RGB2GRAY)
|
||||
|
||||
# NB: goodFeaturesToTrack configuration
|
||||
max_corners = 50
|
||||
quality_lvl = 0.01
|
||||
min_distance = 10
|
||||
block_sz = 3
|
||||
use_harris_detector = True
|
||||
k = 0.04
|
||||
mask = None
|
||||
|
||||
# OpenCV
|
||||
expected = cv.goodFeaturesToTrack(in_mat, max_corners, quality_lvl,
|
||||
min_distance, mask=mask,
|
||||
blockSize=block_sz, useHarrisDetector=use_harris_detector, k=k)
|
||||
|
||||
# G-API
|
||||
g_in = cv.GMat()
|
||||
g_out = goodFeaturesToTrack(g_in, max_corners, quality_lvl,
|
||||
min_distance, mask, block_sz, use_harris_detector, k)
|
||||
|
||||
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out))
|
||||
pkg = cv.gapi.wip.kernels((custom_goodFeaturesToTrack, 'custom.goodFeaturesToTrack'))
|
||||
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
|
||||
|
||||
# NB: OpenCV & G-API have different output types.
|
||||
# OpenCV - numpy array with shape (num_points, 1, 2)
|
||||
# G-API - list of tuples with size - num_points
|
||||
# Comparison
|
||||
self.assertEqual(0.0, cv.norm(expected.flatten(),
|
||||
np.array(actual, dtype=np.float32).flatten(), cv.NORM_INF))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
NewOpenCVTests.bootstrap()
|
||||
203
modules/gapi/misc/python/test/test_gapi_streaming.py
Normal file
203
modules/gapi/misc/python/test/test_gapi_streaming.py
Normal file
@@ -0,0 +1,203 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
import os
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
class test_gapi_streaming(NewOpenCVTests):
|
||||
|
||||
def test_image_input(self):
|
||||
sz = (1280, 720)
|
||||
in_mat = np.random.randint(0, 100, sz).astype(np.uint8)
|
||||
|
||||
# OpenCV
|
||||
expected = cv.medianBlur(in_mat, 3)
|
||||
|
||||
# G-API
|
||||
g_in = cv.GMat()
|
||||
g_out = cv.gapi.medianBlur(g_in, 3)
|
||||
c = cv.GComputation(g_in, g_out)
|
||||
ccomp = c.compileStreaming(cv.descr_of(in_mat))
|
||||
ccomp.setSource(cv.gin(in_mat))
|
||||
ccomp.start()
|
||||
|
||||
_, actual = ccomp.pull()
|
||||
|
||||
# Assert
|
||||
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
|
||||
|
||||
|
||||
def test_video_input(self):
|
||||
ksize = 3
|
||||
path = self.find_file('cv/video/768x576.avi', [os.environ['OPENCV_TEST_DATA_PATH']])
|
||||
|
||||
# OpenCV
|
||||
cap = cv.VideoCapture(path)
|
||||
|
||||
# G-API
|
||||
g_in = cv.GMat()
|
||||
g_out = cv.gapi.medianBlur(g_in, ksize)
|
||||
c = cv.GComputation(g_in, g_out)
|
||||
|
||||
ccomp = c.compileStreaming()
|
||||
source = cv.gapi.wip.make_capture_src(path)
|
||||
ccomp.setSource(source)
|
||||
ccomp.start()
|
||||
|
||||
# Assert
|
||||
max_num_frames = 10
|
||||
proc_num_frames = 0
|
||||
while cap.isOpened():
|
||||
has_expected, expected = cap.read()
|
||||
has_actual, actual = ccomp.pull()
|
||||
|
||||
self.assertEqual(has_expected, has_actual)
|
||||
|
||||
if not has_actual:
|
||||
break
|
||||
|
||||
self.assertEqual(0.0, cv.norm(cv.medianBlur(expected, ksize), actual, cv.NORM_INF))
|
||||
|
||||
proc_num_frames += 1
|
||||
if proc_num_frames == max_num_frames:
|
||||
break;
|
||||
|
||||
|
||||
def test_video_split3(self):
|
||||
path = self.find_file('cv/video/768x576.avi', [os.environ['OPENCV_TEST_DATA_PATH']])
|
||||
|
||||
# OpenCV
|
||||
cap = cv.VideoCapture(path)
|
||||
|
||||
# G-API
|
||||
g_in = cv.GMat()
|
||||
b, g, r = cv.gapi.split3(g_in)
|
||||
c = cv.GComputation(cv.GIn(g_in), cv.GOut(b, g, r))
|
||||
|
||||
ccomp = c.compileStreaming()
|
||||
source = cv.gapi.wip.make_capture_src(path)
|
||||
ccomp.setSource(source)
|
||||
ccomp.start()
|
||||
|
||||
# Assert
|
||||
max_num_frames = 10
|
||||
proc_num_frames = 0
|
||||
while cap.isOpened():
|
||||
has_expected, frame = cap.read()
|
||||
has_actual, actual = ccomp.pull()
|
||||
|
||||
self.assertEqual(has_expected, has_actual)
|
||||
|
||||
if not has_actual:
|
||||
break
|
||||
|
||||
expected = cv.split(frame)
|
||||
for e, a in zip(expected, actual):
|
||||
self.assertEqual(0.0, cv.norm(e, a, cv.NORM_INF))
|
||||
|
||||
proc_num_frames += 1
|
||||
if proc_num_frames == max_num_frames:
|
||||
break;
|
||||
|
||||
|
||||
def test_video_add(self):
|
||||
sz = (576, 768, 3)
|
||||
in_mat = np.random.randint(0, 100, sz).astype(np.uint8)
|
||||
|
||||
path = self.find_file('cv/video/768x576.avi', [os.environ['OPENCV_TEST_DATA_PATH']])
|
||||
|
||||
# OpenCV
|
||||
cap = cv.VideoCapture(path)
|
||||
|
||||
# G-API
|
||||
g_in1 = cv.GMat()
|
||||
g_in2 = cv.GMat()
|
||||
out = cv.gapi.add(g_in1, g_in2)
|
||||
c = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(out))
|
||||
|
||||
ccomp = c.compileStreaming()
|
||||
source = cv.gapi.wip.make_capture_src(path)
|
||||
ccomp.setSource(cv.gin(source, in_mat))
|
||||
ccomp.start()
|
||||
|
||||
# Assert
|
||||
max_num_frames = 10
|
||||
proc_num_frames = 0
|
||||
while cap.isOpened():
|
||||
has_expected, frame = cap.read()
|
||||
has_actual, actual = ccomp.pull()
|
||||
|
||||
self.assertEqual(has_expected, has_actual)
|
||||
|
||||
if not has_actual:
|
||||
break
|
||||
|
||||
expected = cv.add(frame, in_mat)
|
||||
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
|
||||
|
||||
proc_num_frames += 1
|
||||
if proc_num_frames == max_num_frames:
|
||||
break;
|
||||
|
||||
|
||||
def test_video_good_features_to_track(self):
|
||||
path = self.find_file('cv/video/768x576.avi', [os.environ['OPENCV_TEST_DATA_PATH']])
|
||||
|
||||
# NB: goodFeaturesToTrack configuration
|
||||
max_corners = 50
|
||||
quality_lvl = 0.01
|
||||
min_distance = 10
|
||||
block_sz = 3
|
||||
use_harris_detector = True
|
||||
k = 0.04
|
||||
mask = None
|
||||
|
||||
# OpenCV
|
||||
cap = cv.VideoCapture(path)
|
||||
|
||||
# G-API
|
||||
g_in = cv.GMat()
|
||||
g_gray = cv.gapi.RGB2Gray(g_in)
|
||||
g_out = cv.gapi.goodFeaturesToTrack(g_gray, max_corners, quality_lvl,
|
||||
min_distance, mask, block_sz, use_harris_detector, k)
|
||||
|
||||
c = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out))
|
||||
|
||||
ccomp = c.compileStreaming()
|
||||
source = cv.gapi.wip.make_capture_src(path)
|
||||
ccomp.setSource(source)
|
||||
ccomp.start()
|
||||
|
||||
# Assert
|
||||
max_num_frames = 10
|
||||
proc_num_frames = 0
|
||||
while cap.isOpened():
|
||||
has_expected, frame = cap.read()
|
||||
has_actual, actual = ccomp.pull()
|
||||
|
||||
self.assertEqual(has_expected, has_actual)
|
||||
|
||||
if not has_actual:
|
||||
break
|
||||
|
||||
# OpenCV
|
||||
frame = cv.cvtColor(frame, cv.COLOR_RGB2GRAY)
|
||||
expected = cv.goodFeaturesToTrack(frame, max_corners, quality_lvl,
|
||||
min_distance, mask=mask,
|
||||
blockSize=block_sz, useHarrisDetector=use_harris_detector, k=k)
|
||||
for e, a in zip(expected, actual):
|
||||
# NB: OpenCV & G-API have different output shapes:
|
||||
# OpenCV - (num_points, 1, 2)
|
||||
# G-API - (num_points, 2)
|
||||
self.assertEqual(0.0, cv.norm(e.flatten(),
|
||||
np.array(a, np.float32).flatten(),
|
||||
cv.NORM_INF))
|
||||
|
||||
proc_num_frames += 1
|
||||
if proc_num_frames == max_num_frames:
|
||||
break;
|
||||
|
||||
if __name__ == '__main__':
|
||||
NewOpenCVTests.bootstrap()
|
||||
32
modules/gapi/misc/python/test/test_gapi_types.py
Normal file
32
modules/gapi/misc/python/test/test_gapi_types.py
Normal file
@@ -0,0 +1,32 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
import os
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
class gapi_types_test(NewOpenCVTests):
|
||||
|
||||
def test_garray_type(self):
|
||||
types = [cv.gapi.CV_BOOL , cv.gapi.CV_INT , cv.gapi.CV_DOUBLE , cv.gapi.CV_FLOAT,
|
||||
cv.gapi.CV_STRING, cv.gapi.CV_POINT , cv.gapi.CV_POINT2F, cv.gapi.CV_SIZE ,
|
||||
cv.gapi.CV_RECT , cv.gapi.CV_SCALAR, cv.gapi.CV_MAT , cv.gapi.CV_GMAT]
|
||||
|
||||
for t in types:
|
||||
g_array = cv.GArrayT(t)
|
||||
self.assertEqual(t, g_array.type())
|
||||
|
||||
|
||||
def test_gopaque_type(self):
|
||||
types = [cv.gapi.CV_BOOL , cv.gapi.CV_INT , cv.gapi.CV_DOUBLE , cv.gapi.CV_FLOAT,
|
||||
cv.gapi.CV_STRING, cv.gapi.CV_POINT , cv.gapi.CV_POINT2F, cv.gapi.CV_SIZE ,
|
||||
cv.gapi.CV_RECT]
|
||||
|
||||
for t in types:
|
||||
g_opaque = cv.GOpaqueT(t)
|
||||
self.assertEqual(t, g_opaque.type())
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
NewOpenCVTests.bootstrap()
|
||||
Reference in New Issue
Block a user