init - 初始化项目

This commit is contained in:
Lee Nony
2022-05-06 01:58:53 +08:00
commit 90a5cc7cb6
6772 changed files with 2837787 additions and 0 deletions

View File

@@ -0,0 +1,190 @@
#!/usr/bin/env python
import numpy as np
import cv2 as cv
import os
from tests_common import NewOpenCVTests
# Plaidml is an optional backend
pkgs = [
('ocl' , cv.gapi.core.ocl.kernels()),
('cpu' , cv.gapi.core.cpu.kernels()),
('fluid' , cv.gapi.core.fluid.kernels())
# ('plaidml', cv.gapi.core.plaidml.kernels())
]
class gapi_core_test(NewOpenCVTests):
def test_add(self):
# TODO: Extend to use any type and size here
sz = (720, 1280)
in1 = np.full(sz, 100)
in2 = np.full(sz, 50)
# OpenCV
expected = cv.add(in1, in2)
# G-API
g_in1 = cv.GMat()
g_in2 = cv.GMat()
g_out = cv.gapi.add(g_in1, g_in2)
comp = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(g_out))
for pkg_name, pkg in pkgs:
actual = comp.apply(cv.gin(in1, in2), args=cv.compile_args(pkg))
# Comparison
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF),
'Failed on ' + pkg_name + ' backend')
self.assertEqual(expected.dtype, actual.dtype, 'Failed on ' + pkg_name + ' backend')
def test_add_uint8(self):
sz = (720, 1280)
in1 = np.full(sz, 100, dtype=np.uint8)
in2 = np.full(sz, 50 , dtype=np.uint8)
# OpenCV
expected = cv.add(in1, in2)
# G-API
g_in1 = cv.GMat()
g_in2 = cv.GMat()
g_out = cv.gapi.add(g_in1, g_in2)
comp = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(g_out))
for pkg_name, pkg in pkgs:
actual = comp.apply(cv.gin(in1, in2), args=cv.compile_args(pkg))
# Comparison
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF),
'Failed on ' + pkg_name + ' backend')
self.assertEqual(expected.dtype, actual.dtype, 'Failed on ' + pkg_name + ' backend')
def test_mean(self):
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
in_mat = cv.imread(img_path)
# OpenCV
expected = cv.mean(in_mat)
# G-API
g_in = cv.GMat()
g_out = cv.gapi.mean(g_in)
comp = cv.GComputation(g_in, g_out)
for pkg_name, pkg in pkgs:
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
# Comparison
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF),
'Failed on ' + pkg_name + ' backend')
def test_split3(self):
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
in_mat = cv.imread(img_path)
# OpenCV
expected = cv.split(in_mat)
# G-API
g_in = cv.GMat()
b, g, r = cv.gapi.split3(g_in)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(b, g, r))
for pkg_name, pkg in pkgs:
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
# Comparison
for e, a in zip(expected, actual):
self.assertEqual(0.0, cv.norm(e, a, cv.NORM_INF),
'Failed on ' + pkg_name + ' backend')
self.assertEqual(e.dtype, a.dtype, 'Failed on ' + pkg_name + ' backend')
def test_threshold(self):
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
in_mat = cv.cvtColor(cv.imread(img_path), cv.COLOR_RGB2GRAY)
maxv = (30, 30)
# OpenCV
expected_thresh, expected_mat = cv.threshold(in_mat, maxv[0], maxv[0], cv.THRESH_TRIANGLE)
# G-API
g_in = cv.GMat()
g_sc = cv.GScalar()
mat, threshold = cv.gapi.threshold(g_in, g_sc, cv.THRESH_TRIANGLE)
comp = cv.GComputation(cv.GIn(g_in, g_sc), cv.GOut(mat, threshold))
for pkg_name, pkg in pkgs:
actual_mat, actual_thresh = comp.apply(cv.gin(in_mat, maxv), args=cv.compile_args(pkg))
# Comparison
self.assertEqual(0.0, cv.norm(expected_mat, actual_mat, cv.NORM_INF),
'Failed on ' + pkg_name + ' backend')
self.assertEqual(expected_mat.dtype, actual_mat.dtype,
'Failed on ' + pkg_name + ' backend')
self.assertEqual(expected_thresh, actual_thresh[0],
'Failed on ' + pkg_name + ' backend')
def test_kmeans(self):
# K-means params
count = 100
sz = (count, 2)
in_mat = np.random.random(sz).astype(np.float32)
K = 5
flags = cv.KMEANS_RANDOM_CENTERS
attempts = 1;
criteria = (cv.TERM_CRITERIA_MAX_ITER + cv.TERM_CRITERIA_EPS, 30, 0)
# G-API
g_in = cv.GMat()
compactness, out_labels, centers = cv.gapi.kmeans(g_in, K, criteria, attempts, flags)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(compactness, out_labels, centers))
compact, labels, centers = comp.apply(cv.gin(in_mat))
# Assert
self.assertTrue(compact >= 0)
self.assertEqual(sz[0], labels.shape[0])
self.assertEqual(1, labels.shape[1])
self.assertTrue(labels.size != 0)
self.assertEqual(centers.shape[1], sz[1]);
self.assertEqual(centers.shape[0], K);
self.assertTrue(centers.size != 0);
def generate_random_points(self, sz):
arr = np.random.random(sz).astype(np.float32).T
return list(zip(arr[0], arr[1]))
def test_kmeans_2d(self):
# K-means 2D params
count = 100
sz = (count, 2)
amount = sz[0]
K = 5
flags = cv.KMEANS_RANDOM_CENTERS
attempts = 1;
criteria = (cv.TERM_CRITERIA_MAX_ITER + cv.TERM_CRITERIA_EPS, 30, 0);
in_vector = self.generate_random_points(sz)
in_labels = []
# G-API
data = cv.GArrayT(cv.gapi.CV_POINT2F)
best_labels = cv.GArrayT(cv.gapi.CV_INT)
compactness, out_labels, centers = cv.gapi.kmeans(data, K, best_labels, criteria, attempts, flags);
comp = cv.GComputation(cv.GIn(data, best_labels), cv.GOut(compactness, out_labels, centers));
compact, labels, centers = comp.apply(cv.gin(in_vector, in_labels));
# Assert
self.assertTrue(compact >= 0)
self.assertEqual(amount, len(labels))
self.assertEqual(K, len(centers))
if __name__ == '__main__':
NewOpenCVTests.bootstrap()

View File

@@ -0,0 +1,106 @@
#!/usr/bin/env python
import numpy as np
import cv2 as cv
import os
from tests_common import NewOpenCVTests
# Plaidml is an optional backend
pkgs = [
('ocl' , cv.gapi.core.ocl.kernels()),
('cpu' , cv.gapi.core.cpu.kernels()),
('fluid' , cv.gapi.core.fluid.kernels())
# ('plaidml', cv.gapi.core.plaidml.kernels())
]
class gapi_imgproc_test(NewOpenCVTests):
def test_good_features_to_track(self):
# TODO: Extend to use any type and size here
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
in1 = cv.cvtColor(cv.imread(img_path), cv.COLOR_RGB2GRAY)
# NB: goodFeaturesToTrack configuration
max_corners = 50
quality_lvl = 0.01
min_distance = 10
block_sz = 3
use_harris_detector = True
k = 0.04
mask = None
# OpenCV
expected = cv.goodFeaturesToTrack(in1, max_corners, quality_lvl,
min_distance, mask=mask,
blockSize=block_sz, useHarrisDetector=use_harris_detector, k=k)
# G-API
g_in = cv.GMat()
g_out = cv.gapi.goodFeaturesToTrack(g_in, max_corners, quality_lvl,
min_distance, mask, block_sz, use_harris_detector, k)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out))
for pkg_name, pkg in pkgs:
actual = comp.apply(cv.gin(in1), args=cv.compile_args(pkg))
# NB: OpenCV & G-API have different output shapes:
# OpenCV - (num_points, 1, 2)
# G-API - (num_points, 2)
# Comparison
self.assertEqual(0.0, cv.norm(expected.flatten(),
np.array(actual, dtype=np.float32).flatten(),
cv.NORM_INF),
'Failed on ' + pkg_name + ' backend')
def test_rgb2gray(self):
# TODO: Extend to use any type and size here
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
in1 = cv.imread(img_path)
# OpenCV
expected = cv.cvtColor(in1, cv.COLOR_RGB2GRAY)
# G-API
g_in = cv.GMat()
g_out = cv.gapi.RGB2Gray(g_in)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out))
for pkg_name, pkg in pkgs:
actual = comp.apply(cv.gin(in1), args=cv.compile_args(pkg))
# Comparison
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF),
'Failed on ' + pkg_name + ' backend')
def test_bounding_rect(self):
sz = 1280
fscale = 256
def sample_value(fscale):
return np.random.uniform(0, 255 * fscale) / fscale
points = np.array([(sample_value(fscale), sample_value(fscale)) for _ in range(1280)], np.float32)
# OpenCV
expected = cv.boundingRect(points)
# G-API
g_in = cv.GMat()
g_out = cv.gapi.boundingRect(g_in)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out))
for pkg_name, pkg in pkgs:
actual = comp.apply(cv.gin(points), args=cv.compile_args(pkg))
# Comparison
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF),
'Failed on ' + pkg_name + ' backend')
if __name__ == '__main__':
NewOpenCVTests.bootstrap()

View File

@@ -0,0 +1,321 @@
#!/usr/bin/env python
import numpy as np
import cv2 as cv
import os
from tests_common import NewOpenCVTests
class test_gapi_infer(NewOpenCVTests):
def infer_reference_network(self, model_path, weights_path, img):
net = cv.dnn.readNetFromModelOptimizer(model_path, weights_path)
net.setPreferableBackend(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE)
net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
blob = cv.dnn.blobFromImage(img)
net.setInput(blob)
return net.forward(net.getUnconnectedOutLayersNames())
def make_roi(self, img, roi):
return img[roi[1]:roi[1] + roi[3], roi[0]:roi[0] + roi[2], ...]
def test_age_gender_infer(self):
# NB: Check IE
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE):
return
root_path = '/omz_intel_models/intel/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013'
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
device_id = 'CPU'
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
img = cv.resize(cv.imread(img_path), (62,62))
# OpenCV DNN
dnn_age, dnn_gender = self.infer_reference_network(model_path, weights_path, img)
# OpenCV G-API
g_in = cv.GMat()
inputs = cv.GInferInputs()
inputs.setInput('data', g_in)
outputs = cv.gapi.infer("net", inputs)
age_g = outputs.at("age_conv3")
gender_g = outputs.at("prob")
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(age_g, gender_g))
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id)
gapi_age, gapi_gender = comp.apply(cv.gin(img), args=cv.compile_args(cv.gapi.networks(pp)))
# Check
self.assertEqual(0.0, cv.norm(dnn_gender, gapi_gender, cv.NORM_INF))
self.assertEqual(0.0, cv.norm(dnn_age, gapi_age, cv.NORM_INF))
def test_age_gender_infer_roi(self):
# NB: Check IE
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE):
return
root_path = '/omz_intel_models/intel/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013'
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
device_id = 'CPU'
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
img = cv.imread(img_path)
roi = (10, 10, 62, 62)
# OpenCV DNN
dnn_age, dnn_gender = self.infer_reference_network(model_path,
weights_path,
self.make_roi(img, roi))
# OpenCV G-API
g_in = cv.GMat()
g_roi = cv.GOpaqueT(cv.gapi.CV_RECT)
inputs = cv.GInferInputs()
inputs.setInput('data', g_in)
outputs = cv.gapi.infer("net", g_roi, inputs)
age_g = outputs.at("age_conv3")
gender_g = outputs.at("prob")
comp = cv.GComputation(cv.GIn(g_in, g_roi), cv.GOut(age_g, gender_g))
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id)
gapi_age, gapi_gender = comp.apply(cv.gin(img, roi), args=cv.compile_args(cv.gapi.networks(pp)))
# Check
self.assertEqual(0.0, cv.norm(dnn_gender, gapi_gender, cv.NORM_INF))
self.assertEqual(0.0, cv.norm(dnn_age, gapi_age, cv.NORM_INF))
def test_age_gender_infer_roi_list(self):
# NB: Check IE
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE):
return
root_path = '/omz_intel_models/intel/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013'
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
device_id = 'CPU'
rois = [(10, 15, 62, 62), (23, 50, 62, 62), (14, 100, 62, 62), (80, 50, 62, 62)]
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
img = cv.imread(img_path)
# OpenCV DNN
dnn_age_list = []
dnn_gender_list = []
for roi in rois:
age, gender = self.infer_reference_network(model_path,
weights_path,
self.make_roi(img, roi))
dnn_age_list.append(age)
dnn_gender_list.append(gender)
# OpenCV G-API
g_in = cv.GMat()
g_rois = cv.GArrayT(cv.gapi.CV_RECT)
inputs = cv.GInferInputs()
inputs.setInput('data', g_in)
outputs = cv.gapi.infer("net", g_rois, inputs)
age_g = outputs.at("age_conv3")
gender_g = outputs.at("prob")
comp = cv.GComputation(cv.GIn(g_in, g_rois), cv.GOut(age_g, gender_g))
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id)
gapi_age_list, gapi_gender_list = comp.apply(cv.gin(img, rois),
args=cv.compile_args(cv.gapi.networks(pp)))
# Check
for gapi_age, gapi_gender, dnn_age, dnn_gender in zip(gapi_age_list,
gapi_gender_list,
dnn_age_list,
dnn_gender_list):
self.assertEqual(0.0, cv.norm(dnn_gender, gapi_gender, cv.NORM_INF))
self.assertEqual(0.0, cv.norm(dnn_age, gapi_age, cv.NORM_INF))
def test_age_gender_infer2_roi(self):
# NB: Check IE
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE):
return
root_path = '/omz_intel_models/intel/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013'
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
device_id = 'CPU'
rois = [(10, 15, 62, 62), (23, 50, 62, 62), (14, 100, 62, 62), (80, 50, 62, 62)]
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
img = cv.imread(img_path)
# OpenCV DNN
dnn_age_list = []
dnn_gender_list = []
for roi in rois:
age, gender = self.infer_reference_network(model_path,
weights_path,
self.make_roi(img, roi))
dnn_age_list.append(age)
dnn_gender_list.append(gender)
# OpenCV G-API
g_in = cv.GMat()
g_rois = cv.GArrayT(cv.gapi.CV_RECT)
inputs = cv.GInferListInputs()
inputs.setInput('data', g_rois)
outputs = cv.gapi.infer2("net", g_in, inputs)
age_g = outputs.at("age_conv3")
gender_g = outputs.at("prob")
comp = cv.GComputation(cv.GIn(g_in, g_rois), cv.GOut(age_g, gender_g))
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id)
gapi_age_list, gapi_gender_list = comp.apply(cv.gin(img, rois),
args=cv.compile_args(cv.gapi.networks(pp)))
# Check
for gapi_age, gapi_gender, dnn_age, dnn_gender in zip(gapi_age_list,
gapi_gender_list,
dnn_age_list,
dnn_gender_list):
self.assertEqual(0.0, cv.norm(dnn_gender, gapi_gender, cv.NORM_INF))
self.assertEqual(0.0, cv.norm(dnn_age, gapi_age, cv.NORM_INF))
def test_person_detection_retail_0013(self):
# NB: Check IE
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE):
return
root_path = '/omz_intel_models/intel/person-detection-retail-0013/FP32/person-detection-retail-0013'
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
img_path = self.find_file('gpu/lbpcascade/er.png', [os.environ.get('OPENCV_TEST_DATA_PATH')])
device_id = 'CPU'
img = cv.resize(cv.imread(img_path), (544, 320))
# OpenCV DNN
net = cv.dnn.readNetFromModelOptimizer(model_path, weights_path)
net.setPreferableBackend(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE)
net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
blob = cv.dnn.blobFromImage(img)
def parseSSD(detections, size):
h, w = size
bboxes = []
detections = detections.reshape(-1, 7)
for sample_id, class_id, confidence, xmin, ymin, xmax, ymax in detections:
if confidence >= 0.5:
x = int(xmin * w)
y = int(ymin * h)
width = int(xmax * w - x)
height = int(ymax * h - y)
bboxes.append((x, y, width, height))
return bboxes
net.setInput(blob)
dnn_detections = net.forward()
dnn_boxes = parseSSD(np.array(dnn_detections), img.shape[:2])
# OpenCV G-API
g_in = cv.GMat()
inputs = cv.GInferInputs()
inputs.setInput('data', g_in)
g_sz = cv.gapi.streaming.size(g_in)
outputs = cv.gapi.infer("net", inputs)
detections = outputs.at("detection_out")
bboxes = cv.gapi.parseSSD(detections, g_sz, 0.5, False, False)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(bboxes))
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id)
gapi_age, gapi_gender = comp.apply(cv.gin(img), args=cv.compile_args(cv.gapi.networks(pp)))
gapi_boxes = comp.apply(cv.gin(img.astype(np.float32)),
args=cv.compile_args(cv.gapi.networks(pp)))
# Comparison
self.assertEqual(0.0, cv.norm(np.array(dnn_boxes).flatten(),
np.array(gapi_boxes).flatten(),
cv.NORM_INF))
def test_person_detection_retail_0013(self):
# NB: Check IE
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE):
return
root_path = '/omz_intel_models/intel/person-detection-retail-0013/FP32/person-detection-retail-0013'
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
img_path = self.find_file('gpu/lbpcascade/er.png', [os.environ.get('OPENCV_TEST_DATA_PATH')])
device_id = 'CPU'
img = cv.resize(cv.imread(img_path), (544, 320))
# OpenCV DNN
net = cv.dnn.readNetFromModelOptimizer(model_path, weights_path)
net.setPreferableBackend(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE)
net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
blob = cv.dnn.blobFromImage(img)
def parseSSD(detections, size):
h, w = size
bboxes = []
detections = detections.reshape(-1, 7)
for sample_id, class_id, confidence, xmin, ymin, xmax, ymax in detections:
if confidence >= 0.5:
x = int(xmin * w)
y = int(ymin * h)
width = int(xmax * w - x)
height = int(ymax * h - y)
bboxes.append((x, y, width, height))
return bboxes
net.setInput(blob)
dnn_detections = net.forward()
dnn_boxes = parseSSD(np.array(dnn_detections), img.shape[:2])
# OpenCV G-API
g_in = cv.GMat()
inputs = cv.GInferInputs()
inputs.setInput('data', g_in)
g_sz = cv.gapi.streaming.size(g_in)
outputs = cv.gapi.infer("net", inputs)
detections = outputs.at("detection_out")
bboxes = cv.gapi.parseSSD(detections, g_sz, 0.5, False, False)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(bboxes))
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id)
gapi_boxes = comp.apply(cv.gin(img.astype(np.float32)),
args=cv.compile_args(cv.gapi.networks(pp)))
# Comparison
self.assertEqual(0.0, cv.norm(np.array(dnn_boxes).flatten(),
np.array(gapi_boxes).flatten(),
cv.NORM_INF))
if __name__ == '__main__':
NewOpenCVTests.bootstrap()

View File

@@ -0,0 +1,526 @@
#!/usr/bin/env python
import numpy as np
import cv2 as cv
import os
from tests_common import NewOpenCVTests
# Plaidml is an optional backend
pkgs = [
('ocl' , cv.gapi.core.ocl.kernels()),
('cpu' , cv.gapi.core.cpu.kernels()),
('fluid' , cv.gapi.core.fluid.kernels())
# ('plaidml', cv.gapi.core.plaidml.kernels())
]
# Test output GMat.
def custom_add(img1, img2, dtype):
return cv.add(img1, img2)
# Test output GScalar.
def custom_mean(img):
return cv.mean(img)
# Test output tuple of GMat's.
def custom_split3(img):
# NB: cv.split return list but g-api requires tuple in multiple output case
return tuple(cv.split(img))
# Test output GOpaque.
def custom_size(img):
# NB: Take only H, W, because the operation should return cv::Size which is 2D.
return img.shape[:2]
# Test output GArray.
def custom_goodFeaturesToTrack(img, max_corners, quality_lvl,
min_distance, mask, block_sz,
use_harris_detector, k):
features = cv.goodFeaturesToTrack(img, max_corners, quality_lvl,
min_distance, mask=mask,
blockSize=block_sz,
useHarrisDetector=use_harris_detector, k=k)
# NB: The operation output is cv::GArray<cv::Pointf>, so it should be mapped
# to python paramaters like this: [(1.2, 3.4), (5.2, 3.2)], because the cv::Point2f
# according to opencv rules mapped to the tuple and cv::GArray<> mapped to the list.
# OpenCV returns np.array with shape (n_features, 1, 2), so let's to convert it to list
# tuples with size - n_features.
features = list(map(tuple, features.reshape(features.shape[0], -1)))
return features
# Test input scalar.
def custom_addC(img, sc, dtype):
# NB: dtype is just ignored in this implementation.
# More over from G-API kernel got scalar as tuples with 4 elements
# where the last element is equal to zero, just cut him for broadcasting.
return img + np.array(sc, dtype=np.uint8)[:-1]
# Test input opaque.
def custom_sizeR(rect):
# NB: rect - is tuple (x, y, h, w)
return (rect[2], rect[3])
# Test input array.
def custom_boundingRect(array):
# NB: OpenCV - numpy array (n_points x 2).
# G-API - array of tuples (n_points).
return cv.boundingRect(np.array(array))
# Test input mat
def add(g_in1, g_in2, dtype):
def custom_add_meta(img_desc1, img_desc2, dtype):
return img_desc1
return cv.gapi.wip.op('custom.add', custom_add_meta, g_in1, g_in2, dtype).getGMat()
# Test multiple output mat
def split3(g_in):
def custom_split3_meta(img_desc):
out_desc = img_desc.withType(img_desc.depth, 1)
return out_desc, out_desc, out_desc
op = cv.gapi.wip.op('custom.split3', custom_split3_meta, g_in)
ch1 = op.getGMat()
ch2 = op.getGMat()
ch3 = op.getGMat()
return ch1, ch2, ch3
# Test output scalar
def mean(g_in):
def custom_mean_meta(img_desc):
return cv.empty_scalar_desc()
op = cv.gapi.wip.op('custom.mean', custom_mean_meta, g_in)
return op.getGScalar()
# Test input scalar
def addC(g_in, g_sc, dtype):
def custom_addC_meta(img_desc, sc_desc, dtype):
return img_desc
op = cv.gapi.wip.op('custom.addC', custom_addC_meta, g_in, g_sc, dtype)
return op.getGMat()
# Test output opaque.
def size(g_in):
def custom_size_meta(img_desc):
return cv.empty_gopaque_desc()
op = cv.gapi.wip.op('custom.size', custom_size_meta, g_in)
return op.getGOpaque(cv.gapi.CV_SIZE)
# Test input opaque.
def sizeR(g_rect):
def custom_sizeR_meta(opaque_desc):
return cv.empty_gopaque_desc()
op = cv.gapi.wip.op('custom.sizeR', custom_sizeR_meta, g_rect)
return op.getGOpaque(cv.gapi.CV_SIZE)
# Test input array.
def boundingRect(g_array):
def custom_boundingRect_meta(array_desc):
return cv.empty_gopaque_desc()
op = cv.gapi.wip.op('custom.boundingRect', custom_boundingRect_meta, g_array)
return op.getGOpaque(cv.gapi.CV_RECT)
# Test output GArray.
def goodFeaturesToTrack(g_in, max_corners, quality_lvl,
min_distance, mask, block_sz,
use_harris_detector, k):
def custom_goodFeaturesToTrack_meta(img_desc, max_corners, quality_lvl,
min_distance, mask, block_sz, use_harris_detector, k):
return cv.empty_array_desc()
op = cv.gapi.wip.op('custom.goodFeaturesToTrack', custom_goodFeaturesToTrack_meta, g_in,
max_corners, quality_lvl, min_distance, mask, block_sz, use_harris_detector, k)
return op.getGArray(cv.gapi.CV_POINT2F)
class gapi_sample_pipelines(NewOpenCVTests):
# NB: This test check multiple outputs for operation
def test_mean_over_r(self):
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
in_mat = cv.imread(img_path)
# # OpenCV
_, _, r_ch = cv.split(in_mat)
expected = cv.mean(r_ch)
# G-API
g_in = cv.GMat()
b, g, r = cv.gapi.split3(g_in)
g_out = cv.gapi.mean(r)
comp = cv.GComputation(g_in, g_out)
for pkg_name, pkg in pkgs:
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
# Comparison
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF),
'Failed on ' + pkg_name + ' backend')
def test_custom_mean(self):
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
in_mat = cv.imread(img_path)
# OpenCV
expected = cv.mean(in_mat)
# G-API
g_in = cv.GMat()
g_out = cv.gapi.mean(g_in)
comp = cv.GComputation(g_in, g_out)
pkg = cv.gapi.wip.kernels((custom_mean, 'org.opencv.core.math.mean'))
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
# Comparison
self.assertEqual(expected, actual)
def test_custom_add(self):
sz = (3, 3)
in_mat1 = np.full(sz, 45, dtype=np.uint8)
in_mat2 = np.full(sz, 50 , dtype=np.uint8)
# OpenCV
expected = cv.add(in_mat1, in_mat2)
# G-API
g_in1 = cv.GMat()
g_in2 = cv.GMat()
g_out = cv.gapi.add(g_in1, g_in2)
comp = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(g_out))
pkg = cv.gapi.wip.kernels((custom_add, 'org.opencv.core.math.add'))
actual = comp.apply(cv.gin(in_mat1, in_mat2), args=cv.compile_args(pkg))
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_custom_size(self):
sz = (100, 150, 3)
in_mat = np.full(sz, 45, dtype=np.uint8)
# OpenCV
expected = (100, 150)
# G-API
g_in = cv.GMat()
g_sz = cv.gapi.streaming.size(g_in)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_sz))
pkg = cv.gapi.wip.kernels((custom_size, 'org.opencv.streaming.size'))
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_custom_goodFeaturesToTrack(self):
# G-API
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
in_mat = cv.cvtColor(cv.imread(img_path), cv.COLOR_RGB2GRAY)
# NB: goodFeaturesToTrack configuration
max_corners = 50
quality_lvl = 0.01
min_distance = 10
block_sz = 3
use_harris_detector = True
k = 0.04
mask = None
# OpenCV
expected = cv.goodFeaturesToTrack(in_mat, max_corners, quality_lvl,
min_distance, mask=mask,
blockSize=block_sz, useHarrisDetector=use_harris_detector, k=k)
# G-API
g_in = cv.GMat()
g_out = cv.gapi.goodFeaturesToTrack(g_in, max_corners, quality_lvl,
min_distance, mask, block_sz, use_harris_detector, k)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out))
pkg = cv.gapi.wip.kernels((custom_goodFeaturesToTrack, 'org.opencv.imgproc.feature.goodFeaturesToTrack'))
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
# NB: OpenCV & G-API have different output types.
# OpenCV - numpy array with shape (num_points, 1, 2)
# G-API - list of tuples with size - num_points
# Comparison
self.assertEqual(0.0, cv.norm(expected.flatten(),
np.array(actual, dtype=np.float32).flatten(), cv.NORM_INF))
def test_custom_addC(self):
sz = (3, 3, 3)
in_mat = np.full(sz, 45, dtype=np.uint8)
sc = (50, 10, 20)
# Numpy reference, make array from sc to keep uint8 dtype.
expected = in_mat + np.array(sc, dtype=np.uint8)
# G-API
g_in = cv.GMat()
g_sc = cv.GScalar()
g_out = cv.gapi.addC(g_in, g_sc)
comp = cv.GComputation(cv.GIn(g_in, g_sc), cv.GOut(g_out))
pkg = cv.gapi.wip.kernels((custom_addC, 'org.opencv.core.math.addC'))
actual = comp.apply(cv.gin(in_mat, sc), args=cv.compile_args(pkg))
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_custom_sizeR(self):
# x, y, h, w
roi = (10, 15, 100, 150)
expected = (100, 150)
# G-API
g_r = cv.GOpaqueT(cv.gapi.CV_RECT)
g_sz = cv.gapi.streaming.size(g_r)
comp = cv.GComputation(cv.GIn(g_r), cv.GOut(g_sz))
pkg = cv.gapi.wip.kernels((custom_sizeR, 'org.opencv.streaming.sizeR'))
actual = comp.apply(cv.gin(roi), args=cv.compile_args(pkg))
# cv.norm works with tuples ?
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_custom_boundingRect(self):
points = [(0,0), (0,1), (1,0), (1,1)]
# OpenCV
expected = cv.boundingRect(np.array(points))
# G-API
g_pts = cv.GArrayT(cv.gapi.CV_POINT)
g_br = cv.gapi.boundingRect(g_pts)
comp = cv.GComputation(cv.GIn(g_pts), cv.GOut(g_br))
pkg = cv.gapi.wip.kernels((custom_boundingRect, 'org.opencv.imgproc.shape.boundingRectVector32S'))
actual = comp.apply(cv.gin(points), args=cv.compile_args(pkg))
# cv.norm works with tuples ?
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_multiple_custom_kernels(self):
sz = (3, 3, 3)
in_mat1 = np.full(sz, 45, dtype=np.uint8)
in_mat2 = np.full(sz, 50 , dtype=np.uint8)
# OpenCV
expected = cv.mean(cv.split(cv.add(in_mat1, in_mat2))[1])
# G-API
g_in1 = cv.GMat()
g_in2 = cv.GMat()
g_sum = cv.gapi.add(g_in1, g_in2)
g_b, g_r, g_g = cv.gapi.split3(g_sum)
g_mean = cv.gapi.mean(g_b)
comp = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(g_mean))
pkg = cv.gapi.wip.kernels((custom_add , 'org.opencv.core.math.add'),
(custom_mean , 'org.opencv.core.math.mean'),
(custom_split3, 'org.opencv.core.transform.split3'))
actual = comp.apply(cv.gin(in_mat1, in_mat2), args=cv.compile_args(pkg))
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_custom_op_add(self):
sz = (3, 3)
in_mat1 = np.full(sz, 45, dtype=np.uint8)
in_mat2 = np.full(sz, 50, dtype=np.uint8)
# OpenCV
expected = cv.add(in_mat1, in_mat2)
# G-API
g_in1 = cv.GMat()
g_in2 = cv.GMat()
g_out = add(g_in1, g_in2, cv.CV_8UC1)
comp = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(g_out))
pkg = cv.gapi.wip.kernels((custom_add, 'custom.add'))
actual = comp.apply(cv.gin(in_mat1, in_mat2), args=cv.compile_args(pkg))
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_custom_op_split3(self):
sz = (4, 4)
in_ch1 = np.full(sz, 1, dtype=np.uint8)
in_ch2 = np.full(sz, 2, dtype=np.uint8)
in_ch3 = np.full(sz, 3, dtype=np.uint8)
# H x W x C
in_mat = np.stack((in_ch1, in_ch2, in_ch3), axis=2)
# G-API
g_in = cv.GMat()
g_ch1, g_ch2, g_ch3 = split3(g_in)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_ch1, g_ch2, g_ch3))
pkg = cv.gapi.wip.kernels((custom_split3, 'custom.split3'))
ch1, ch2, ch3 = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
self.assertEqual(0.0, cv.norm(in_ch1, ch1, cv.NORM_INF))
self.assertEqual(0.0, cv.norm(in_ch2, ch2, cv.NORM_INF))
self.assertEqual(0.0, cv.norm(in_ch3, ch3, cv.NORM_INF))
def test_custom_op_mean(self):
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
in_mat = cv.imread(img_path)
# OpenCV
expected = cv.mean(in_mat)
# G-API
g_in = cv.GMat()
g_out = mean(g_in)
comp = cv.GComputation(g_in, g_out)
pkg = cv.gapi.wip.kernels((custom_mean, 'custom.mean'))
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
# Comparison
self.assertEqual(expected, actual)
def test_custom_op_addC(self):
sz = (3, 3, 3)
in_mat = np.full(sz, 45, dtype=np.uint8)
sc = (50, 10, 20)
# Numpy reference, make array from sc to keep uint8 dtype.
expected = in_mat + np.array(sc, dtype=np.uint8)
# G-API
g_in = cv.GMat()
g_sc = cv.GScalar()
g_out = addC(g_in, g_sc, cv.CV_8UC1)
comp = cv.GComputation(cv.GIn(g_in, g_sc), cv.GOut(g_out))
pkg = cv.gapi.wip.kernels((custom_addC, 'custom.addC'))
actual = comp.apply(cv.gin(in_mat, sc), args=cv.compile_args(pkg))
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_custom_op_size(self):
sz = (100, 150, 3)
in_mat = np.full(sz, 45, dtype=np.uint8)
# Open_cV
expected = (100, 150)
# G-API
g_in = cv.GMat()
g_sz = size(g_in)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_sz))
pkg = cv.gapi.wip.kernels((custom_size, 'custom.size'))
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_custom_op_sizeR(self):
# x, y, h, w
roi = (10, 15, 100, 150)
expected = (100, 150)
# G-API
g_r = cv.GOpaqueT(cv.gapi.CV_RECT)
g_sz = sizeR(g_r)
comp = cv.GComputation(cv.GIn(g_r), cv.GOut(g_sz))
pkg = cv.gapi.wip.kernels((custom_sizeR, 'custom.sizeR'))
actual = comp.apply(cv.gin(roi), args=cv.compile_args(pkg))
# cv.norm works with tuples ?
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_custom_op_boundingRect(self):
points = [(0,0), (0,1), (1,0), (1,1)]
# OpenCV
expected = cv.boundingRect(np.array(points))
# G-API
g_pts = cv.GArrayT(cv.gapi.CV_POINT)
g_br = boundingRect(g_pts)
comp = cv.GComputation(cv.GIn(g_pts), cv.GOut(g_br))
pkg = cv.gapi.wip.kernels((custom_boundingRect, 'custom.boundingRect'))
actual = comp.apply(cv.gin(points), args=cv.compile_args(pkg))
# cv.norm works with tuples ?
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_custom_op_goodFeaturesToTrack(self):
# G-API
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
in_mat = cv.cvtColor(cv.imread(img_path), cv.COLOR_RGB2GRAY)
# NB: goodFeaturesToTrack configuration
max_corners = 50
quality_lvl = 0.01
min_distance = 10
block_sz = 3
use_harris_detector = True
k = 0.04
mask = None
# OpenCV
expected = cv.goodFeaturesToTrack(in_mat, max_corners, quality_lvl,
min_distance, mask=mask,
blockSize=block_sz, useHarrisDetector=use_harris_detector, k=k)
# G-API
g_in = cv.GMat()
g_out = goodFeaturesToTrack(g_in, max_corners, quality_lvl,
min_distance, mask, block_sz, use_harris_detector, k)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out))
pkg = cv.gapi.wip.kernels((custom_goodFeaturesToTrack, 'custom.goodFeaturesToTrack'))
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
# NB: OpenCV & G-API have different output types.
# OpenCV - numpy array with shape (num_points, 1, 2)
# G-API - list of tuples with size - num_points
# Comparison
self.assertEqual(0.0, cv.norm(expected.flatten(),
np.array(actual, dtype=np.float32).flatten(), cv.NORM_INF))
if __name__ == '__main__':
NewOpenCVTests.bootstrap()

View File

@@ -0,0 +1,203 @@
#!/usr/bin/env python
import numpy as np
import cv2 as cv
import os
from tests_common import NewOpenCVTests
class test_gapi_streaming(NewOpenCVTests):
def test_image_input(self):
sz = (1280, 720)
in_mat = np.random.randint(0, 100, sz).astype(np.uint8)
# OpenCV
expected = cv.medianBlur(in_mat, 3)
# G-API
g_in = cv.GMat()
g_out = cv.gapi.medianBlur(g_in, 3)
c = cv.GComputation(g_in, g_out)
ccomp = c.compileStreaming(cv.descr_of(in_mat))
ccomp.setSource(cv.gin(in_mat))
ccomp.start()
_, actual = ccomp.pull()
# Assert
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_video_input(self):
ksize = 3
path = self.find_file('cv/video/768x576.avi', [os.environ['OPENCV_TEST_DATA_PATH']])
# OpenCV
cap = cv.VideoCapture(path)
# G-API
g_in = cv.GMat()
g_out = cv.gapi.medianBlur(g_in, ksize)
c = cv.GComputation(g_in, g_out)
ccomp = c.compileStreaming()
source = cv.gapi.wip.make_capture_src(path)
ccomp.setSource(source)
ccomp.start()
# Assert
max_num_frames = 10
proc_num_frames = 0
while cap.isOpened():
has_expected, expected = cap.read()
has_actual, actual = ccomp.pull()
self.assertEqual(has_expected, has_actual)
if not has_actual:
break
self.assertEqual(0.0, cv.norm(cv.medianBlur(expected, ksize), actual, cv.NORM_INF))
proc_num_frames += 1
if proc_num_frames == max_num_frames:
break;
def test_video_split3(self):
path = self.find_file('cv/video/768x576.avi', [os.environ['OPENCV_TEST_DATA_PATH']])
# OpenCV
cap = cv.VideoCapture(path)
# G-API
g_in = cv.GMat()
b, g, r = cv.gapi.split3(g_in)
c = cv.GComputation(cv.GIn(g_in), cv.GOut(b, g, r))
ccomp = c.compileStreaming()
source = cv.gapi.wip.make_capture_src(path)
ccomp.setSource(source)
ccomp.start()
# Assert
max_num_frames = 10
proc_num_frames = 0
while cap.isOpened():
has_expected, frame = cap.read()
has_actual, actual = ccomp.pull()
self.assertEqual(has_expected, has_actual)
if not has_actual:
break
expected = cv.split(frame)
for e, a in zip(expected, actual):
self.assertEqual(0.0, cv.norm(e, a, cv.NORM_INF))
proc_num_frames += 1
if proc_num_frames == max_num_frames:
break;
def test_video_add(self):
sz = (576, 768, 3)
in_mat = np.random.randint(0, 100, sz).astype(np.uint8)
path = self.find_file('cv/video/768x576.avi', [os.environ['OPENCV_TEST_DATA_PATH']])
# OpenCV
cap = cv.VideoCapture(path)
# G-API
g_in1 = cv.GMat()
g_in2 = cv.GMat()
out = cv.gapi.add(g_in1, g_in2)
c = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(out))
ccomp = c.compileStreaming()
source = cv.gapi.wip.make_capture_src(path)
ccomp.setSource(cv.gin(source, in_mat))
ccomp.start()
# Assert
max_num_frames = 10
proc_num_frames = 0
while cap.isOpened():
has_expected, frame = cap.read()
has_actual, actual = ccomp.pull()
self.assertEqual(has_expected, has_actual)
if not has_actual:
break
expected = cv.add(frame, in_mat)
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
proc_num_frames += 1
if proc_num_frames == max_num_frames:
break;
def test_video_good_features_to_track(self):
path = self.find_file('cv/video/768x576.avi', [os.environ['OPENCV_TEST_DATA_PATH']])
# NB: goodFeaturesToTrack configuration
max_corners = 50
quality_lvl = 0.01
min_distance = 10
block_sz = 3
use_harris_detector = True
k = 0.04
mask = None
# OpenCV
cap = cv.VideoCapture(path)
# G-API
g_in = cv.GMat()
g_gray = cv.gapi.RGB2Gray(g_in)
g_out = cv.gapi.goodFeaturesToTrack(g_gray, max_corners, quality_lvl,
min_distance, mask, block_sz, use_harris_detector, k)
c = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out))
ccomp = c.compileStreaming()
source = cv.gapi.wip.make_capture_src(path)
ccomp.setSource(source)
ccomp.start()
# Assert
max_num_frames = 10
proc_num_frames = 0
while cap.isOpened():
has_expected, frame = cap.read()
has_actual, actual = ccomp.pull()
self.assertEqual(has_expected, has_actual)
if not has_actual:
break
# OpenCV
frame = cv.cvtColor(frame, cv.COLOR_RGB2GRAY)
expected = cv.goodFeaturesToTrack(frame, max_corners, quality_lvl,
min_distance, mask=mask,
blockSize=block_sz, useHarrisDetector=use_harris_detector, k=k)
for e, a in zip(expected, actual):
# NB: OpenCV & G-API have different output shapes:
# OpenCV - (num_points, 1, 2)
# G-API - (num_points, 2)
self.assertEqual(0.0, cv.norm(e.flatten(),
np.array(a, np.float32).flatten(),
cv.NORM_INF))
proc_num_frames += 1
if proc_num_frames == max_num_frames:
break;
if __name__ == '__main__':
NewOpenCVTests.bootstrap()

View File

@@ -0,0 +1,32 @@
#!/usr/bin/env python
import numpy as np
import cv2 as cv
import os
from tests_common import NewOpenCVTests
class gapi_types_test(NewOpenCVTests):
def test_garray_type(self):
types = [cv.gapi.CV_BOOL , cv.gapi.CV_INT , cv.gapi.CV_DOUBLE , cv.gapi.CV_FLOAT,
cv.gapi.CV_STRING, cv.gapi.CV_POINT , cv.gapi.CV_POINT2F, cv.gapi.CV_SIZE ,
cv.gapi.CV_RECT , cv.gapi.CV_SCALAR, cv.gapi.CV_MAT , cv.gapi.CV_GMAT]
for t in types:
g_array = cv.GArrayT(t)
self.assertEqual(t, g_array.type())
def test_gopaque_type(self):
types = [cv.gapi.CV_BOOL , cv.gapi.CV_INT , cv.gapi.CV_DOUBLE , cv.gapi.CV_FLOAT,
cv.gapi.CV_STRING, cv.gapi.CV_POINT , cv.gapi.CV_POINT2F, cv.gapi.CV_SIZE ,
cv.gapi.CV_RECT]
for t in types:
g_opaque = cv.GOpaqueT(t)
self.assertEqual(t, g_opaque.type())
if __name__ == '__main__':
NewOpenCVTests.bootstrap()