Files
opencv-wasm/modules/gapi/misc/python/test/test_gapi_sample_pipelines.py
2022-05-06 01:58:53 +08:00

527 lines
17 KiB
Python

#!/usr/bin/env python
import numpy as np
import cv2 as cv
import os
from tests_common import NewOpenCVTests
# Plaidml is an optional backend
pkgs = [
('ocl' , cv.gapi.core.ocl.kernels()),
('cpu' , cv.gapi.core.cpu.kernels()),
('fluid' , cv.gapi.core.fluid.kernels())
# ('plaidml', cv.gapi.core.plaidml.kernels())
]
# Test output GMat.
def custom_add(img1, img2, dtype):
return cv.add(img1, img2)
# Test output GScalar.
def custom_mean(img):
return cv.mean(img)
# Test output tuple of GMat's.
def custom_split3(img):
# NB: cv.split return list but g-api requires tuple in multiple output case
return tuple(cv.split(img))
# Test output GOpaque.
def custom_size(img):
# NB: Take only H, W, because the operation should return cv::Size which is 2D.
return img.shape[:2]
# Test output GArray.
def custom_goodFeaturesToTrack(img, max_corners, quality_lvl,
min_distance, mask, block_sz,
use_harris_detector, k):
features = cv.goodFeaturesToTrack(img, max_corners, quality_lvl,
min_distance, mask=mask,
blockSize=block_sz,
useHarrisDetector=use_harris_detector, k=k)
# NB: The operation output is cv::GArray<cv::Pointf>, so it should be mapped
# to python paramaters like this: [(1.2, 3.4), (5.2, 3.2)], because the cv::Point2f
# according to opencv rules mapped to the tuple and cv::GArray<> mapped to the list.
# OpenCV returns np.array with shape (n_features, 1, 2), so let's to convert it to list
# tuples with size - n_features.
features = list(map(tuple, features.reshape(features.shape[0], -1)))
return features
# Test input scalar.
def custom_addC(img, sc, dtype):
# NB: dtype is just ignored in this implementation.
# More over from G-API kernel got scalar as tuples with 4 elements
# where the last element is equal to zero, just cut him for broadcasting.
return img + np.array(sc, dtype=np.uint8)[:-1]
# Test input opaque.
def custom_sizeR(rect):
# NB: rect - is tuple (x, y, h, w)
return (rect[2], rect[3])
# Test input array.
def custom_boundingRect(array):
# NB: OpenCV - numpy array (n_points x 2).
# G-API - array of tuples (n_points).
return cv.boundingRect(np.array(array))
# Test input mat
def add(g_in1, g_in2, dtype):
def custom_add_meta(img_desc1, img_desc2, dtype):
return img_desc1
return cv.gapi.wip.op('custom.add', custom_add_meta, g_in1, g_in2, dtype).getGMat()
# Test multiple output mat
def split3(g_in):
def custom_split3_meta(img_desc):
out_desc = img_desc.withType(img_desc.depth, 1)
return out_desc, out_desc, out_desc
op = cv.gapi.wip.op('custom.split3', custom_split3_meta, g_in)
ch1 = op.getGMat()
ch2 = op.getGMat()
ch3 = op.getGMat()
return ch1, ch2, ch3
# Test output scalar
def mean(g_in):
def custom_mean_meta(img_desc):
return cv.empty_scalar_desc()
op = cv.gapi.wip.op('custom.mean', custom_mean_meta, g_in)
return op.getGScalar()
# Test input scalar
def addC(g_in, g_sc, dtype):
def custom_addC_meta(img_desc, sc_desc, dtype):
return img_desc
op = cv.gapi.wip.op('custom.addC', custom_addC_meta, g_in, g_sc, dtype)
return op.getGMat()
# Test output opaque.
def size(g_in):
def custom_size_meta(img_desc):
return cv.empty_gopaque_desc()
op = cv.gapi.wip.op('custom.size', custom_size_meta, g_in)
return op.getGOpaque(cv.gapi.CV_SIZE)
# Test input opaque.
def sizeR(g_rect):
def custom_sizeR_meta(opaque_desc):
return cv.empty_gopaque_desc()
op = cv.gapi.wip.op('custom.sizeR', custom_sizeR_meta, g_rect)
return op.getGOpaque(cv.gapi.CV_SIZE)
# Test input array.
def boundingRect(g_array):
def custom_boundingRect_meta(array_desc):
return cv.empty_gopaque_desc()
op = cv.gapi.wip.op('custom.boundingRect', custom_boundingRect_meta, g_array)
return op.getGOpaque(cv.gapi.CV_RECT)
# Test output GArray.
def goodFeaturesToTrack(g_in, max_corners, quality_lvl,
min_distance, mask, block_sz,
use_harris_detector, k):
def custom_goodFeaturesToTrack_meta(img_desc, max_corners, quality_lvl,
min_distance, mask, block_sz, use_harris_detector, k):
return cv.empty_array_desc()
op = cv.gapi.wip.op('custom.goodFeaturesToTrack', custom_goodFeaturesToTrack_meta, g_in,
max_corners, quality_lvl, min_distance, mask, block_sz, use_harris_detector, k)
return op.getGArray(cv.gapi.CV_POINT2F)
class gapi_sample_pipelines(NewOpenCVTests):
# NB: This test check multiple outputs for operation
def test_mean_over_r(self):
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
in_mat = cv.imread(img_path)
# # OpenCV
_, _, r_ch = cv.split(in_mat)
expected = cv.mean(r_ch)
# G-API
g_in = cv.GMat()
b, g, r = cv.gapi.split3(g_in)
g_out = cv.gapi.mean(r)
comp = cv.GComputation(g_in, g_out)
for pkg_name, pkg in pkgs:
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
# Comparison
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF),
'Failed on ' + pkg_name + ' backend')
def test_custom_mean(self):
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
in_mat = cv.imread(img_path)
# OpenCV
expected = cv.mean(in_mat)
# G-API
g_in = cv.GMat()
g_out = cv.gapi.mean(g_in)
comp = cv.GComputation(g_in, g_out)
pkg = cv.gapi.wip.kernels((custom_mean, 'org.opencv.core.math.mean'))
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
# Comparison
self.assertEqual(expected, actual)
def test_custom_add(self):
sz = (3, 3)
in_mat1 = np.full(sz, 45, dtype=np.uint8)
in_mat2 = np.full(sz, 50 , dtype=np.uint8)
# OpenCV
expected = cv.add(in_mat1, in_mat2)
# G-API
g_in1 = cv.GMat()
g_in2 = cv.GMat()
g_out = cv.gapi.add(g_in1, g_in2)
comp = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(g_out))
pkg = cv.gapi.wip.kernels((custom_add, 'org.opencv.core.math.add'))
actual = comp.apply(cv.gin(in_mat1, in_mat2), args=cv.compile_args(pkg))
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_custom_size(self):
sz = (100, 150, 3)
in_mat = np.full(sz, 45, dtype=np.uint8)
# OpenCV
expected = (100, 150)
# G-API
g_in = cv.GMat()
g_sz = cv.gapi.streaming.size(g_in)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_sz))
pkg = cv.gapi.wip.kernels((custom_size, 'org.opencv.streaming.size'))
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_custom_goodFeaturesToTrack(self):
# G-API
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
in_mat = cv.cvtColor(cv.imread(img_path), cv.COLOR_RGB2GRAY)
# NB: goodFeaturesToTrack configuration
max_corners = 50
quality_lvl = 0.01
min_distance = 10
block_sz = 3
use_harris_detector = True
k = 0.04
mask = None
# OpenCV
expected = cv.goodFeaturesToTrack(in_mat, max_corners, quality_lvl,
min_distance, mask=mask,
blockSize=block_sz, useHarrisDetector=use_harris_detector, k=k)
# G-API
g_in = cv.GMat()
g_out = cv.gapi.goodFeaturesToTrack(g_in, max_corners, quality_lvl,
min_distance, mask, block_sz, use_harris_detector, k)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out))
pkg = cv.gapi.wip.kernels((custom_goodFeaturesToTrack, 'org.opencv.imgproc.feature.goodFeaturesToTrack'))
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
# NB: OpenCV & G-API have different output types.
# OpenCV - numpy array with shape (num_points, 1, 2)
# G-API - list of tuples with size - num_points
# Comparison
self.assertEqual(0.0, cv.norm(expected.flatten(),
np.array(actual, dtype=np.float32).flatten(), cv.NORM_INF))
def test_custom_addC(self):
sz = (3, 3, 3)
in_mat = np.full(sz, 45, dtype=np.uint8)
sc = (50, 10, 20)
# Numpy reference, make array from sc to keep uint8 dtype.
expected = in_mat + np.array(sc, dtype=np.uint8)
# G-API
g_in = cv.GMat()
g_sc = cv.GScalar()
g_out = cv.gapi.addC(g_in, g_sc)
comp = cv.GComputation(cv.GIn(g_in, g_sc), cv.GOut(g_out))
pkg = cv.gapi.wip.kernels((custom_addC, 'org.opencv.core.math.addC'))
actual = comp.apply(cv.gin(in_mat, sc), args=cv.compile_args(pkg))
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_custom_sizeR(self):
# x, y, h, w
roi = (10, 15, 100, 150)
expected = (100, 150)
# G-API
g_r = cv.GOpaqueT(cv.gapi.CV_RECT)
g_sz = cv.gapi.streaming.size(g_r)
comp = cv.GComputation(cv.GIn(g_r), cv.GOut(g_sz))
pkg = cv.gapi.wip.kernels((custom_sizeR, 'org.opencv.streaming.sizeR'))
actual = comp.apply(cv.gin(roi), args=cv.compile_args(pkg))
# cv.norm works with tuples ?
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_custom_boundingRect(self):
points = [(0,0), (0,1), (1,0), (1,1)]
# OpenCV
expected = cv.boundingRect(np.array(points))
# G-API
g_pts = cv.GArrayT(cv.gapi.CV_POINT)
g_br = cv.gapi.boundingRect(g_pts)
comp = cv.GComputation(cv.GIn(g_pts), cv.GOut(g_br))
pkg = cv.gapi.wip.kernels((custom_boundingRect, 'org.opencv.imgproc.shape.boundingRectVector32S'))
actual = comp.apply(cv.gin(points), args=cv.compile_args(pkg))
# cv.norm works with tuples ?
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_multiple_custom_kernels(self):
sz = (3, 3, 3)
in_mat1 = np.full(sz, 45, dtype=np.uint8)
in_mat2 = np.full(sz, 50 , dtype=np.uint8)
# OpenCV
expected = cv.mean(cv.split(cv.add(in_mat1, in_mat2))[1])
# G-API
g_in1 = cv.GMat()
g_in2 = cv.GMat()
g_sum = cv.gapi.add(g_in1, g_in2)
g_b, g_r, g_g = cv.gapi.split3(g_sum)
g_mean = cv.gapi.mean(g_b)
comp = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(g_mean))
pkg = cv.gapi.wip.kernels((custom_add , 'org.opencv.core.math.add'),
(custom_mean , 'org.opencv.core.math.mean'),
(custom_split3, 'org.opencv.core.transform.split3'))
actual = comp.apply(cv.gin(in_mat1, in_mat2), args=cv.compile_args(pkg))
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_custom_op_add(self):
sz = (3, 3)
in_mat1 = np.full(sz, 45, dtype=np.uint8)
in_mat2 = np.full(sz, 50, dtype=np.uint8)
# OpenCV
expected = cv.add(in_mat1, in_mat2)
# G-API
g_in1 = cv.GMat()
g_in2 = cv.GMat()
g_out = add(g_in1, g_in2, cv.CV_8UC1)
comp = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(g_out))
pkg = cv.gapi.wip.kernels((custom_add, 'custom.add'))
actual = comp.apply(cv.gin(in_mat1, in_mat2), args=cv.compile_args(pkg))
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_custom_op_split3(self):
sz = (4, 4)
in_ch1 = np.full(sz, 1, dtype=np.uint8)
in_ch2 = np.full(sz, 2, dtype=np.uint8)
in_ch3 = np.full(sz, 3, dtype=np.uint8)
# H x W x C
in_mat = np.stack((in_ch1, in_ch2, in_ch3), axis=2)
# G-API
g_in = cv.GMat()
g_ch1, g_ch2, g_ch3 = split3(g_in)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_ch1, g_ch2, g_ch3))
pkg = cv.gapi.wip.kernels((custom_split3, 'custom.split3'))
ch1, ch2, ch3 = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
self.assertEqual(0.0, cv.norm(in_ch1, ch1, cv.NORM_INF))
self.assertEqual(0.0, cv.norm(in_ch2, ch2, cv.NORM_INF))
self.assertEqual(0.0, cv.norm(in_ch3, ch3, cv.NORM_INF))
def test_custom_op_mean(self):
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
in_mat = cv.imread(img_path)
# OpenCV
expected = cv.mean(in_mat)
# G-API
g_in = cv.GMat()
g_out = mean(g_in)
comp = cv.GComputation(g_in, g_out)
pkg = cv.gapi.wip.kernels((custom_mean, 'custom.mean'))
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
# Comparison
self.assertEqual(expected, actual)
def test_custom_op_addC(self):
sz = (3, 3, 3)
in_mat = np.full(sz, 45, dtype=np.uint8)
sc = (50, 10, 20)
# Numpy reference, make array from sc to keep uint8 dtype.
expected = in_mat + np.array(sc, dtype=np.uint8)
# G-API
g_in = cv.GMat()
g_sc = cv.GScalar()
g_out = addC(g_in, g_sc, cv.CV_8UC1)
comp = cv.GComputation(cv.GIn(g_in, g_sc), cv.GOut(g_out))
pkg = cv.gapi.wip.kernels((custom_addC, 'custom.addC'))
actual = comp.apply(cv.gin(in_mat, sc), args=cv.compile_args(pkg))
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_custom_op_size(self):
sz = (100, 150, 3)
in_mat = np.full(sz, 45, dtype=np.uint8)
# Open_cV
expected = (100, 150)
# G-API
g_in = cv.GMat()
g_sz = size(g_in)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_sz))
pkg = cv.gapi.wip.kernels((custom_size, 'custom.size'))
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_custom_op_sizeR(self):
# x, y, h, w
roi = (10, 15, 100, 150)
expected = (100, 150)
# G-API
g_r = cv.GOpaqueT(cv.gapi.CV_RECT)
g_sz = sizeR(g_r)
comp = cv.GComputation(cv.GIn(g_r), cv.GOut(g_sz))
pkg = cv.gapi.wip.kernels((custom_sizeR, 'custom.sizeR'))
actual = comp.apply(cv.gin(roi), args=cv.compile_args(pkg))
# cv.norm works with tuples ?
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_custom_op_boundingRect(self):
points = [(0,0), (0,1), (1,0), (1,1)]
# OpenCV
expected = cv.boundingRect(np.array(points))
# G-API
g_pts = cv.GArrayT(cv.gapi.CV_POINT)
g_br = boundingRect(g_pts)
comp = cv.GComputation(cv.GIn(g_pts), cv.GOut(g_br))
pkg = cv.gapi.wip.kernels((custom_boundingRect, 'custom.boundingRect'))
actual = comp.apply(cv.gin(points), args=cv.compile_args(pkg))
# cv.norm works with tuples ?
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_custom_op_goodFeaturesToTrack(self):
# G-API
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
in_mat = cv.cvtColor(cv.imread(img_path), cv.COLOR_RGB2GRAY)
# NB: goodFeaturesToTrack configuration
max_corners = 50
quality_lvl = 0.01
min_distance = 10
block_sz = 3
use_harris_detector = True
k = 0.04
mask = None
# OpenCV
expected = cv.goodFeaturesToTrack(in_mat, max_corners, quality_lvl,
min_distance, mask=mask,
blockSize=block_sz, useHarrisDetector=use_harris_detector, k=k)
# G-API
g_in = cv.GMat()
g_out = goodFeaturesToTrack(g_in, max_corners, quality_lvl,
min_distance, mask, block_sz, use_harris_detector, k)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out))
pkg = cv.gapi.wip.kernels((custom_goodFeaturesToTrack, 'custom.goodFeaturesToTrack'))
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
# NB: OpenCV & G-API have different output types.
# OpenCV - numpy array with shape (num_points, 1, 2)
# G-API - list of tuples with size - num_points
# Comparison
self.assertEqual(0.0, cv.norm(expected.flatten(),
np.array(actual, dtype=np.float32).flatten(), cv.NORM_INF))
if __name__ == '__main__':
NewOpenCVTests.bootstrap()