#!/usr/bin/env python import numpy as np import cv2 as cv import os from tests_common import NewOpenCVTests # Plaidml is an optional backend pkgs = [ ('ocl' , cv.gapi.core.ocl.kernels()), ('cpu' , cv.gapi.core.cpu.kernels()), ('fluid' , cv.gapi.core.fluid.kernels()) # ('plaidml', cv.gapi.core.plaidml.kernels()) ] # Test output GMat. def custom_add(img1, img2, dtype): return cv.add(img1, img2) # Test output GScalar. def custom_mean(img): return cv.mean(img) # Test output tuple of GMat's. def custom_split3(img): # NB: cv.split return list but g-api requires tuple in multiple output case return tuple(cv.split(img)) # Test output GOpaque. def custom_size(img): # NB: Take only H, W, because the operation should return cv::Size which is 2D. return img.shape[:2] # Test output GArray. def custom_goodFeaturesToTrack(img, max_corners, quality_lvl, min_distance, mask, block_sz, use_harris_detector, k): features = cv.goodFeaturesToTrack(img, max_corners, quality_lvl, min_distance, mask=mask, blockSize=block_sz, useHarrisDetector=use_harris_detector, k=k) # NB: The operation output is cv::GArray, so it should be mapped # to python paramaters like this: [(1.2, 3.4), (5.2, 3.2)], because the cv::Point2f # according to opencv rules mapped to the tuple and cv::GArray<> mapped to the list. # OpenCV returns np.array with shape (n_features, 1, 2), so let's to convert it to list # tuples with size - n_features. features = list(map(tuple, features.reshape(features.shape[0], -1))) return features # Test input scalar. def custom_addC(img, sc, dtype): # NB: dtype is just ignored in this implementation. # More over from G-API kernel got scalar as tuples with 4 elements # where the last element is equal to zero, just cut him for broadcasting. return img + np.array(sc, dtype=np.uint8)[:-1] # Test input opaque. def custom_sizeR(rect): # NB: rect - is tuple (x, y, h, w) return (rect[2], rect[3]) # Test input array. def custom_boundingRect(array): # NB: OpenCV - numpy array (n_points x 2). # G-API - array of tuples (n_points). return cv.boundingRect(np.array(array)) # Test input mat def add(g_in1, g_in2, dtype): def custom_add_meta(img_desc1, img_desc2, dtype): return img_desc1 return cv.gapi.wip.op('custom.add', custom_add_meta, g_in1, g_in2, dtype).getGMat() # Test multiple output mat def split3(g_in): def custom_split3_meta(img_desc): out_desc = img_desc.withType(img_desc.depth, 1) return out_desc, out_desc, out_desc op = cv.gapi.wip.op('custom.split3', custom_split3_meta, g_in) ch1 = op.getGMat() ch2 = op.getGMat() ch3 = op.getGMat() return ch1, ch2, ch3 # Test output scalar def mean(g_in): def custom_mean_meta(img_desc): return cv.empty_scalar_desc() op = cv.gapi.wip.op('custom.mean', custom_mean_meta, g_in) return op.getGScalar() # Test input scalar def addC(g_in, g_sc, dtype): def custom_addC_meta(img_desc, sc_desc, dtype): return img_desc op = cv.gapi.wip.op('custom.addC', custom_addC_meta, g_in, g_sc, dtype) return op.getGMat() # Test output opaque. def size(g_in): def custom_size_meta(img_desc): return cv.empty_gopaque_desc() op = cv.gapi.wip.op('custom.size', custom_size_meta, g_in) return op.getGOpaque(cv.gapi.CV_SIZE) # Test input opaque. def sizeR(g_rect): def custom_sizeR_meta(opaque_desc): return cv.empty_gopaque_desc() op = cv.gapi.wip.op('custom.sizeR', custom_sizeR_meta, g_rect) return op.getGOpaque(cv.gapi.CV_SIZE) # Test input array. def boundingRect(g_array): def custom_boundingRect_meta(array_desc): return cv.empty_gopaque_desc() op = cv.gapi.wip.op('custom.boundingRect', custom_boundingRect_meta, g_array) return op.getGOpaque(cv.gapi.CV_RECT) # Test output GArray. def goodFeaturesToTrack(g_in, max_corners, quality_lvl, min_distance, mask, block_sz, use_harris_detector, k): def custom_goodFeaturesToTrack_meta(img_desc, max_corners, quality_lvl, min_distance, mask, block_sz, use_harris_detector, k): return cv.empty_array_desc() op = cv.gapi.wip.op('custom.goodFeaturesToTrack', custom_goodFeaturesToTrack_meta, g_in, max_corners, quality_lvl, min_distance, mask, block_sz, use_harris_detector, k) return op.getGArray(cv.gapi.CV_POINT2F) class gapi_sample_pipelines(NewOpenCVTests): # NB: This test check multiple outputs for operation def test_mean_over_r(self): img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')]) in_mat = cv.imread(img_path) # # OpenCV _, _, r_ch = cv.split(in_mat) expected = cv.mean(r_ch) # G-API g_in = cv.GMat() b, g, r = cv.gapi.split3(g_in) g_out = cv.gapi.mean(r) comp = cv.GComputation(g_in, g_out) for pkg_name, pkg in pkgs: actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg)) # Comparison self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF), 'Failed on ' + pkg_name + ' backend') def test_custom_mean(self): img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')]) in_mat = cv.imread(img_path) # OpenCV expected = cv.mean(in_mat) # G-API g_in = cv.GMat() g_out = cv.gapi.mean(g_in) comp = cv.GComputation(g_in, g_out) pkg = cv.gapi.wip.kernels((custom_mean, 'org.opencv.core.math.mean')) actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg)) # Comparison self.assertEqual(expected, actual) def test_custom_add(self): sz = (3, 3) in_mat1 = np.full(sz, 45, dtype=np.uint8) in_mat2 = np.full(sz, 50 , dtype=np.uint8) # OpenCV expected = cv.add(in_mat1, in_mat2) # G-API g_in1 = cv.GMat() g_in2 = cv.GMat() g_out = cv.gapi.add(g_in1, g_in2) comp = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(g_out)) pkg = cv.gapi.wip.kernels((custom_add, 'org.opencv.core.math.add')) actual = comp.apply(cv.gin(in_mat1, in_mat2), args=cv.compile_args(pkg)) self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF)) def test_custom_size(self): sz = (100, 150, 3) in_mat = np.full(sz, 45, dtype=np.uint8) # OpenCV expected = (100, 150) # G-API g_in = cv.GMat() g_sz = cv.gapi.streaming.size(g_in) comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_sz)) pkg = cv.gapi.wip.kernels((custom_size, 'org.opencv.streaming.size')) actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg)) self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF)) def test_custom_goodFeaturesToTrack(self): # G-API img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')]) in_mat = cv.cvtColor(cv.imread(img_path), cv.COLOR_RGB2GRAY) # NB: goodFeaturesToTrack configuration max_corners = 50 quality_lvl = 0.01 min_distance = 10 block_sz = 3 use_harris_detector = True k = 0.04 mask = None # OpenCV expected = cv.goodFeaturesToTrack(in_mat, max_corners, quality_lvl, min_distance, mask=mask, blockSize=block_sz, useHarrisDetector=use_harris_detector, k=k) # G-API g_in = cv.GMat() g_out = cv.gapi.goodFeaturesToTrack(g_in, max_corners, quality_lvl, min_distance, mask, block_sz, use_harris_detector, k) comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out)) pkg = cv.gapi.wip.kernels((custom_goodFeaturesToTrack, 'org.opencv.imgproc.feature.goodFeaturesToTrack')) actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg)) # NB: OpenCV & G-API have different output types. # OpenCV - numpy array with shape (num_points, 1, 2) # G-API - list of tuples with size - num_points # Comparison self.assertEqual(0.0, cv.norm(expected.flatten(), np.array(actual, dtype=np.float32).flatten(), cv.NORM_INF)) def test_custom_addC(self): sz = (3, 3, 3) in_mat = np.full(sz, 45, dtype=np.uint8) sc = (50, 10, 20) # Numpy reference, make array from sc to keep uint8 dtype. expected = in_mat + np.array(sc, dtype=np.uint8) # G-API g_in = cv.GMat() g_sc = cv.GScalar() g_out = cv.gapi.addC(g_in, g_sc) comp = cv.GComputation(cv.GIn(g_in, g_sc), cv.GOut(g_out)) pkg = cv.gapi.wip.kernels((custom_addC, 'org.opencv.core.math.addC')) actual = comp.apply(cv.gin(in_mat, sc), args=cv.compile_args(pkg)) self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF)) def test_custom_sizeR(self): # x, y, h, w roi = (10, 15, 100, 150) expected = (100, 150) # G-API g_r = cv.GOpaqueT(cv.gapi.CV_RECT) g_sz = cv.gapi.streaming.size(g_r) comp = cv.GComputation(cv.GIn(g_r), cv.GOut(g_sz)) pkg = cv.gapi.wip.kernels((custom_sizeR, 'org.opencv.streaming.sizeR')) actual = comp.apply(cv.gin(roi), args=cv.compile_args(pkg)) # cv.norm works with tuples ? self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF)) def test_custom_boundingRect(self): points = [(0,0), (0,1), (1,0), (1,1)] # OpenCV expected = cv.boundingRect(np.array(points)) # G-API g_pts = cv.GArrayT(cv.gapi.CV_POINT) g_br = cv.gapi.boundingRect(g_pts) comp = cv.GComputation(cv.GIn(g_pts), cv.GOut(g_br)) pkg = cv.gapi.wip.kernels((custom_boundingRect, 'org.opencv.imgproc.shape.boundingRectVector32S')) actual = comp.apply(cv.gin(points), args=cv.compile_args(pkg)) # cv.norm works with tuples ? self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF)) def test_multiple_custom_kernels(self): sz = (3, 3, 3) in_mat1 = np.full(sz, 45, dtype=np.uint8) in_mat2 = np.full(sz, 50 , dtype=np.uint8) # OpenCV expected = cv.mean(cv.split(cv.add(in_mat1, in_mat2))[1]) # G-API g_in1 = cv.GMat() g_in2 = cv.GMat() g_sum = cv.gapi.add(g_in1, g_in2) g_b, g_r, g_g = cv.gapi.split3(g_sum) g_mean = cv.gapi.mean(g_b) comp = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(g_mean)) pkg = cv.gapi.wip.kernels((custom_add , 'org.opencv.core.math.add'), (custom_mean , 'org.opencv.core.math.mean'), (custom_split3, 'org.opencv.core.transform.split3')) actual = comp.apply(cv.gin(in_mat1, in_mat2), args=cv.compile_args(pkg)) self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF)) def test_custom_op_add(self): sz = (3, 3) in_mat1 = np.full(sz, 45, dtype=np.uint8) in_mat2 = np.full(sz, 50, dtype=np.uint8) # OpenCV expected = cv.add(in_mat1, in_mat2) # G-API g_in1 = cv.GMat() g_in2 = cv.GMat() g_out = add(g_in1, g_in2, cv.CV_8UC1) comp = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(g_out)) pkg = cv.gapi.wip.kernels((custom_add, 'custom.add')) actual = comp.apply(cv.gin(in_mat1, in_mat2), args=cv.compile_args(pkg)) self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF)) def test_custom_op_split3(self): sz = (4, 4) in_ch1 = np.full(sz, 1, dtype=np.uint8) in_ch2 = np.full(sz, 2, dtype=np.uint8) in_ch3 = np.full(sz, 3, dtype=np.uint8) # H x W x C in_mat = np.stack((in_ch1, in_ch2, in_ch3), axis=2) # G-API g_in = cv.GMat() g_ch1, g_ch2, g_ch3 = split3(g_in) comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_ch1, g_ch2, g_ch3)) pkg = cv.gapi.wip.kernels((custom_split3, 'custom.split3')) ch1, ch2, ch3 = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg)) self.assertEqual(0.0, cv.norm(in_ch1, ch1, cv.NORM_INF)) self.assertEqual(0.0, cv.norm(in_ch2, ch2, cv.NORM_INF)) self.assertEqual(0.0, cv.norm(in_ch3, ch3, cv.NORM_INF)) def test_custom_op_mean(self): img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')]) in_mat = cv.imread(img_path) # OpenCV expected = cv.mean(in_mat) # G-API g_in = cv.GMat() g_out = mean(g_in) comp = cv.GComputation(g_in, g_out) pkg = cv.gapi.wip.kernels((custom_mean, 'custom.mean')) actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg)) # Comparison self.assertEqual(expected, actual) def test_custom_op_addC(self): sz = (3, 3, 3) in_mat = np.full(sz, 45, dtype=np.uint8) sc = (50, 10, 20) # Numpy reference, make array from sc to keep uint8 dtype. expected = in_mat + np.array(sc, dtype=np.uint8) # G-API g_in = cv.GMat() g_sc = cv.GScalar() g_out = addC(g_in, g_sc, cv.CV_8UC1) comp = cv.GComputation(cv.GIn(g_in, g_sc), cv.GOut(g_out)) pkg = cv.gapi.wip.kernels((custom_addC, 'custom.addC')) actual = comp.apply(cv.gin(in_mat, sc), args=cv.compile_args(pkg)) self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF)) def test_custom_op_size(self): sz = (100, 150, 3) in_mat = np.full(sz, 45, dtype=np.uint8) # Open_cV expected = (100, 150) # G-API g_in = cv.GMat() g_sz = size(g_in) comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_sz)) pkg = cv.gapi.wip.kernels((custom_size, 'custom.size')) actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg)) self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF)) def test_custom_op_sizeR(self): # x, y, h, w roi = (10, 15, 100, 150) expected = (100, 150) # G-API g_r = cv.GOpaqueT(cv.gapi.CV_RECT) g_sz = sizeR(g_r) comp = cv.GComputation(cv.GIn(g_r), cv.GOut(g_sz)) pkg = cv.gapi.wip.kernels((custom_sizeR, 'custom.sizeR')) actual = comp.apply(cv.gin(roi), args=cv.compile_args(pkg)) # cv.norm works with tuples ? self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF)) def test_custom_op_boundingRect(self): points = [(0,0), (0,1), (1,0), (1,1)] # OpenCV expected = cv.boundingRect(np.array(points)) # G-API g_pts = cv.GArrayT(cv.gapi.CV_POINT) g_br = boundingRect(g_pts) comp = cv.GComputation(cv.GIn(g_pts), cv.GOut(g_br)) pkg = cv.gapi.wip.kernels((custom_boundingRect, 'custom.boundingRect')) actual = comp.apply(cv.gin(points), args=cv.compile_args(pkg)) # cv.norm works with tuples ? self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF)) def test_custom_op_goodFeaturesToTrack(self): # G-API img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')]) in_mat = cv.cvtColor(cv.imread(img_path), cv.COLOR_RGB2GRAY) # NB: goodFeaturesToTrack configuration max_corners = 50 quality_lvl = 0.01 min_distance = 10 block_sz = 3 use_harris_detector = True k = 0.04 mask = None # OpenCV expected = cv.goodFeaturesToTrack(in_mat, max_corners, quality_lvl, min_distance, mask=mask, blockSize=block_sz, useHarrisDetector=use_harris_detector, k=k) # G-API g_in = cv.GMat() g_out = goodFeaturesToTrack(g_in, max_corners, quality_lvl, min_distance, mask, block_sz, use_harris_detector, k) comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out)) pkg = cv.gapi.wip.kernels((custom_goodFeaturesToTrack, 'custom.goodFeaturesToTrack')) actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg)) # NB: OpenCV & G-API have different output types. # OpenCV - numpy array with shape (num_points, 1, 2) # G-API - list of tuples with size - num_points # Comparison self.assertEqual(0.0, cv.norm(expected.flatten(), np.array(actual, dtype=np.float32).flatten(), cv.NORM_INF)) if __name__ == '__main__': NewOpenCVTests.bootstrap()