init - 初始化项目

This commit is contained in:
Lee Nony
2022-05-06 01:58:53 +08:00
commit 90a5cc7cb6
6772 changed files with 2837787 additions and 0 deletions

View File

@@ -0,0 +1,117 @@
from __future__ import print_function
import cv2 as cv
import numpy as np
import random as rng
NTRAINING_SAMPLES = 100 # Number of training samples per class
FRAC_LINEAR_SEP = 0.9 # Fraction of samples which compose the linear separable part
# Data for visual representation
WIDTH = 512
HEIGHT = 512
I = np.zeros((HEIGHT, WIDTH, 3), dtype=np.uint8)
# --------------------- 1. Set up training data randomly ---------------------------------------
trainData = np.empty((2*NTRAINING_SAMPLES, 2), dtype=np.float32)
labels = np.empty((2*NTRAINING_SAMPLES, 1), dtype=np.int32)
rng.seed(100) # Random value generation class
# Set up the linearly separable part of the training data
nLinearSamples = int(FRAC_LINEAR_SEP * NTRAINING_SAMPLES)
## [setup1]
# Generate random points for the class 1
trainClass = trainData[0:nLinearSamples,:]
# The x coordinate of the points is in [0, 0.4)
c = trainClass[:,0:1]
c[:] = np.random.uniform(0.0, 0.4 * WIDTH, c.shape)
# The y coordinate of the points is in [0, 1)
c = trainClass[:,1:2]
c[:] = np.random.uniform(0.0, HEIGHT, c.shape)
# Generate random points for the class 2
trainClass = trainData[2*NTRAINING_SAMPLES-nLinearSamples:2*NTRAINING_SAMPLES,:]
# The x coordinate of the points is in [0.6, 1]
c = trainClass[:,0:1]
c[:] = np.random.uniform(0.6*WIDTH, WIDTH, c.shape)
# The y coordinate of the points is in [0, 1)
c = trainClass[:,1:2]
c[:] = np.random.uniform(0.0, HEIGHT, c.shape)
## [setup1]
#------------------ Set up the non-linearly separable part of the training data ---------------
## [setup2]
# Generate random points for the classes 1 and 2
trainClass = trainData[nLinearSamples:2*NTRAINING_SAMPLES-nLinearSamples,:]
# The x coordinate of the points is in [0.4, 0.6)
c = trainClass[:,0:1]
c[:] = np.random.uniform(0.4*WIDTH, 0.6*WIDTH, c.shape)
# The y coordinate of the points is in [0, 1)
c = trainClass[:,1:2]
c[:] = np.random.uniform(0.0, HEIGHT, c.shape)
## [setup2]
#------------------------- Set up the labels for the classes ---------------------------------
labels[0:NTRAINING_SAMPLES,:] = 1 # Class 1
labels[NTRAINING_SAMPLES:2*NTRAINING_SAMPLES,:] = 2 # Class 2
#------------------------ 2. Set up the support vector machines parameters --------------------
print('Starting training process')
## [init]
svm = cv.ml.SVM_create()
svm.setType(cv.ml.SVM_C_SVC)
svm.setC(0.1)
svm.setKernel(cv.ml.SVM_LINEAR)
svm.setTermCriteria((cv.TERM_CRITERIA_MAX_ITER, int(1e7), 1e-6))
## [init]
#------------------------ 3. Train the svm ----------------------------------------------------
## [train]
svm.train(trainData, cv.ml.ROW_SAMPLE, labels)
## [train]
print('Finished training process')
#------------------------ 4. Show the decision regions ----------------------------------------
## [show]
green = (0,100,0)
blue = (100,0,0)
for i in range(I.shape[0]):
for j in range(I.shape[1]):
sampleMat = np.matrix([[j,i]], dtype=np.float32)
response = svm.predict(sampleMat)[1]
if response == 1:
I[i,j] = green
elif response == 2:
I[i,j] = blue
## [show]
#----------------------- 5. Show the training data --------------------------------------------
## [show_data]
thick = -1
# Class 1
for i in range(NTRAINING_SAMPLES):
px = trainData[i,0]
py = trainData[i,1]
cv.circle(I, (int(px), int(py)), 3, (0, 255, 0), thick)
# Class 2
for i in range(NTRAINING_SAMPLES, 2*NTRAINING_SAMPLES):
px = trainData[i,0]
py = trainData[i,1]
cv.circle(I, (int(px), int(py)), 3, (255, 0, 0), thick)
## [show_data]
#------------------------- 6. Show support vectors --------------------------------------------
## [show_vectors]
thick = 2
sv = svm.getUncompressedSupportVectors()
for i in range(sv.shape[0]):
cv.circle(I, (int(sv[i,0]), int(sv[i,1])), 6, (128, 128, 128), thick)
## [show_vectors]
cv.imwrite('result.png', I) # save the Image
cv.imshow('SVM for Non-Linear Training Data', I) # show it to the user
cv.waitKey()