init - 初始化项目
This commit is contained in:
@@ -0,0 +1,144 @@
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
|
||||
import org.opencv.core.Core;
|
||||
import org.opencv.core.CvType;
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.core.MatOfPoint;
|
||||
import org.opencv.core.Point;
|
||||
import org.opencv.core.Scalar;
|
||||
import org.opencv.highgui.HighGui;
|
||||
import org.opencv.imgcodecs.Imgcodecs;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
|
||||
//This program demonstrates how to use OpenCV PCA to extract the orientation of an object.
|
||||
class IntroductionToPCA {
|
||||
private void drawAxis(Mat img, Point p_, Point q_, Scalar colour, float scale) {
|
||||
Point p = new Point(p_.x, p_.y);
|
||||
Point q = new Point(q_.x, q_.y);
|
||||
//! [visualization1]
|
||||
double angle = Math.atan2(p.y - q.y, p.x - q.x); // angle in radians
|
||||
double hypotenuse = Math.sqrt((p.y - q.y) * (p.y - q.y) + (p.x - q.x) * (p.x - q.x));
|
||||
|
||||
// Here we lengthen the arrow by a factor of scale
|
||||
q.x = (int) (p.x - scale * hypotenuse * Math.cos(angle));
|
||||
q.y = (int) (p.y - scale * hypotenuse * Math.sin(angle));
|
||||
Imgproc.line(img, p, q, colour, 1, Imgproc.LINE_AA, 0);
|
||||
|
||||
// create the arrow hooks
|
||||
p.x = (int) (q.x + 9 * Math.cos(angle + Math.PI / 4));
|
||||
p.y = (int) (q.y + 9 * Math.sin(angle + Math.PI / 4));
|
||||
Imgproc.line(img, p, q, colour, 1, Imgproc.LINE_AA, 0);
|
||||
|
||||
p.x = (int) (q.x + 9 * Math.cos(angle - Math.PI / 4));
|
||||
p.y = (int) (q.y + 9 * Math.sin(angle - Math.PI / 4));
|
||||
Imgproc.line(img, p, q, colour, 1, Imgproc.LINE_AA, 0);
|
||||
//! [visualization1]
|
||||
}
|
||||
|
||||
private double getOrientation(MatOfPoint ptsMat, Mat img) {
|
||||
List<Point> pts = ptsMat.toList();
|
||||
//! [pca]
|
||||
// Construct a buffer used by the pca analysis
|
||||
int sz = pts.size();
|
||||
Mat dataPts = new Mat(sz, 2, CvType.CV_64F);
|
||||
double[] dataPtsData = new double[(int) (dataPts.total() * dataPts.channels())];
|
||||
for (int i = 0; i < dataPts.rows(); i++) {
|
||||
dataPtsData[i * dataPts.cols()] = pts.get(i).x;
|
||||
dataPtsData[i * dataPts.cols() + 1] = pts.get(i).y;
|
||||
}
|
||||
dataPts.put(0, 0, dataPtsData);
|
||||
|
||||
// Perform PCA analysis
|
||||
Mat mean = new Mat();
|
||||
Mat eigenvectors = new Mat();
|
||||
Mat eigenvalues = new Mat();
|
||||
Core.PCACompute2(dataPts, mean, eigenvectors, eigenvalues);
|
||||
double[] meanData = new double[(int) (mean.total() * mean.channels())];
|
||||
mean.get(0, 0, meanData);
|
||||
|
||||
// Store the center of the object
|
||||
Point cntr = new Point(meanData[0], meanData[1]);
|
||||
|
||||
// Store the eigenvalues and eigenvectors
|
||||
double[] eigenvectorsData = new double[(int) (eigenvectors.total() * eigenvectors.channels())];
|
||||
double[] eigenvaluesData = new double[(int) (eigenvalues.total() * eigenvalues.channels())];
|
||||
eigenvectors.get(0, 0, eigenvectorsData);
|
||||
eigenvalues.get(0, 0, eigenvaluesData);
|
||||
//! [pca]
|
||||
|
||||
//! [visualization]
|
||||
// Draw the principal components
|
||||
Imgproc.circle(img, cntr, 3, new Scalar(255, 0, 255), 2);
|
||||
Point p1 = new Point(cntr.x + 0.02 * eigenvectorsData[0] * eigenvaluesData[0],
|
||||
cntr.y + 0.02 * eigenvectorsData[1] * eigenvaluesData[0]);
|
||||
Point p2 = new Point(cntr.x - 0.02 * eigenvectorsData[2] * eigenvaluesData[1],
|
||||
cntr.y - 0.02 * eigenvectorsData[3] * eigenvaluesData[1]);
|
||||
drawAxis(img, cntr, p1, new Scalar(0, 255, 0), 1);
|
||||
drawAxis(img, cntr, p2, new Scalar(255, 255, 0), 5);
|
||||
|
||||
double angle = Math.atan2(eigenvectorsData[1], eigenvectorsData[0]); // orientation in radians
|
||||
//! [visualization]
|
||||
|
||||
return angle;
|
||||
}
|
||||
|
||||
public void run(String[] args) {
|
||||
//! [pre-process]
|
||||
// Load image
|
||||
String filename = args.length > 0 ? args[0] : "../data/pca_test1.jpg";
|
||||
Mat src = Imgcodecs.imread(filename);
|
||||
|
||||
// Check if image is loaded successfully
|
||||
if (src.empty()) {
|
||||
System.err.println("Cannot read image: " + filename);
|
||||
System.exit(0);
|
||||
}
|
||||
|
||||
Mat srcOriginal = src.clone();
|
||||
HighGui.imshow("src", srcOriginal);
|
||||
|
||||
// Convert image to grayscale
|
||||
Mat gray = new Mat();
|
||||
Imgproc.cvtColor(src, gray, Imgproc.COLOR_BGR2GRAY);
|
||||
|
||||
// Convert image to binary
|
||||
Mat bw = new Mat();
|
||||
Imgproc.threshold(gray, bw, 50, 255, Imgproc.THRESH_BINARY | Imgproc.THRESH_OTSU);
|
||||
//! [pre-process]
|
||||
|
||||
//! [contours]
|
||||
// Find all the contours in the thresholded image
|
||||
List<MatOfPoint> contours = new ArrayList<>();
|
||||
Mat hierarchy = new Mat();
|
||||
Imgproc.findContours(bw, contours, hierarchy, Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_NONE);
|
||||
|
||||
for (int i = 0; i < contours.size(); i++) {
|
||||
// Calculate the area of each contour
|
||||
double area = Imgproc.contourArea(contours.get(i));
|
||||
// Ignore contours that are too small or too large
|
||||
if (area < 1e2 || 1e5 < area)
|
||||
continue;
|
||||
|
||||
// Draw each contour only for visualisation purposes
|
||||
Imgproc.drawContours(src, contours, i, new Scalar(0, 0, 255), 2);
|
||||
// Find the orientation of each shape
|
||||
getOrientation(contours.get(i), src);
|
||||
}
|
||||
//! [contours]
|
||||
|
||||
HighGui.imshow("output", src);
|
||||
|
||||
HighGui.waitKey();
|
||||
System.exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
public class IntroductionToPCADemo {
|
||||
public static void main(String[] args) {
|
||||
// Load the native OpenCV library
|
||||
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
|
||||
|
||||
new IntroductionToPCA().run(args);
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user