init - 初始化项目
This commit is contained in:
@@ -0,0 +1,71 @@
|
||||
from torchvision import models
|
||||
|
||||
from ..pytorch_model import (
|
||||
PyTorchModelPreparer,
|
||||
PyTorchModelProcessor,
|
||||
PyTorchDnnModelProcessor
|
||||
)
|
||||
from ...common.evaluation.classification.cls_data_fetcher import PyTorchPreprocessedFetch
|
||||
from ...common.test.cls_model_test_pipeline import ClsModelTestPipeline
|
||||
from ...common.test.configs.default_preprocess_config import pytorch_resize_input_blob
|
||||
from ...common.test.configs.test_config import TestClsConfig
|
||||
from ...common.utils import set_pytorch_env, create_extended_parser
|
||||
|
||||
model_dict = {
|
||||
"alexnet": models.alexnet,
|
||||
|
||||
"vgg11": models.vgg11,
|
||||
"vgg13": models.vgg13,
|
||||
"vgg16": models.vgg16,
|
||||
"vgg19": models.vgg19,
|
||||
|
||||
"resnet18": models.resnet18,
|
||||
"resnet34": models.resnet34,
|
||||
"resnet50": models.resnet50,
|
||||
"resnet101": models.resnet101,
|
||||
"resnet152": models.resnet152,
|
||||
|
||||
"squeezenet1_0": models.squeezenet1_0,
|
||||
"squeezenet1_1": models.squeezenet1_1,
|
||||
|
||||
"resnext50_32x4d": models.resnext50_32x4d,
|
||||
"resnext101_32x8d": models.resnext101_32x8d,
|
||||
|
||||
"wide_resnet50_2": models.wide_resnet50_2,
|
||||
"wide_resnet101_2": models.wide_resnet101_2
|
||||
}
|
||||
|
||||
|
||||
class PyTorchClsModel(PyTorchModelPreparer):
|
||||
def __init__(self, height, width, model_name, original_model):
|
||||
super(PyTorchClsModel, self).__init__(height, width, model_name, original_model)
|
||||
|
||||
|
||||
def main():
|
||||
set_pytorch_env()
|
||||
|
||||
parser = create_extended_parser(list(model_dict.keys()))
|
||||
cmd_args = parser.parse_args()
|
||||
model_name = cmd_args.model_name
|
||||
|
||||
cls_model = PyTorchClsModel(
|
||||
height=TestClsConfig().frame_size,
|
||||
width=TestClsConfig().frame_size,
|
||||
model_name=model_name,
|
||||
original_model=model_dict[model_name](pretrained=True)
|
||||
)
|
||||
|
||||
pytorch_cls_pipeline = ClsModelTestPipeline(
|
||||
network_model=cls_model,
|
||||
model_processor=PyTorchModelProcessor,
|
||||
dnn_model_processor=PyTorchDnnModelProcessor,
|
||||
data_fetcher=PyTorchPreprocessedFetch,
|
||||
cls_args_parser=parser,
|
||||
default_input_blob_preproc=pytorch_resize_input_blob
|
||||
)
|
||||
|
||||
pytorch_cls_pipeline.init_test_pipeline()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -0,0 +1,139 @@
|
||||
import os
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.onnx
|
||||
from torch.autograd import Variable
|
||||
from torchvision import models
|
||||
|
||||
|
||||
def get_pytorch_onnx_model(original_model):
|
||||
# define the directory for further converted model save
|
||||
onnx_model_path = "models"
|
||||
# define the name of further converted model
|
||||
onnx_model_name = "resnet50.onnx"
|
||||
|
||||
# create directory for further converted model
|
||||
os.makedirs(onnx_model_path, exist_ok=True)
|
||||
|
||||
# get full path to the converted model
|
||||
full_model_path = os.path.join(onnx_model_path, onnx_model_name)
|
||||
|
||||
# generate model input
|
||||
generated_input = Variable(
|
||||
torch.randn(1, 3, 224, 224)
|
||||
)
|
||||
|
||||
# model export into ONNX format
|
||||
torch.onnx.export(
|
||||
original_model,
|
||||
generated_input,
|
||||
full_model_path,
|
||||
verbose=True,
|
||||
input_names=["input"],
|
||||
output_names=["output"],
|
||||
opset_version=11
|
||||
)
|
||||
|
||||
return full_model_path
|
||||
|
||||
|
||||
def get_preprocessed_img(img_path):
|
||||
# read the image
|
||||
input_img = cv2.imread(img_path, cv2.IMREAD_COLOR)
|
||||
input_img = input_img.astype(np.float32)
|
||||
|
||||
input_img = cv2.resize(input_img, (256, 256))
|
||||
|
||||
# define preprocess parameters
|
||||
mean = np.array([0.485, 0.456, 0.406]) * 255.0
|
||||
scale = 1 / 255.0
|
||||
std = [0.229, 0.224, 0.225]
|
||||
|
||||
# prepare input blob to fit the model input:
|
||||
# 1. subtract mean
|
||||
# 2. scale to set pixel values from 0 to 1
|
||||
input_blob = cv2.dnn.blobFromImage(
|
||||
image=input_img,
|
||||
scalefactor=scale,
|
||||
size=(224, 224), # img target size
|
||||
mean=mean,
|
||||
swapRB=True, # BGR -> RGB
|
||||
crop=True # center crop
|
||||
)
|
||||
# 3. divide by std
|
||||
input_blob[0] /= np.asarray(std, dtype=np.float32).reshape(3, 1, 1)
|
||||
return input_blob
|
||||
|
||||
|
||||
def get_imagenet_labels(labels_path):
|
||||
with open(labels_path) as f:
|
||||
imagenet_labels = [line.strip() for line in f.readlines()]
|
||||
return imagenet_labels
|
||||
|
||||
|
||||
def get_opencv_dnn_prediction(opencv_net, preproc_img, imagenet_labels):
|
||||
# set OpenCV DNN input
|
||||
opencv_net.setInput(preproc_img)
|
||||
|
||||
# OpenCV DNN inference
|
||||
out = opencv_net.forward()
|
||||
print("OpenCV DNN prediction: \n")
|
||||
print("* shape: ", out.shape)
|
||||
|
||||
# get the predicted class ID
|
||||
imagenet_class_id = np.argmax(out)
|
||||
|
||||
# get confidence
|
||||
confidence = out[0][imagenet_class_id]
|
||||
print("* class ID: {}, label: {}".format(imagenet_class_id, imagenet_labels[imagenet_class_id]))
|
||||
print("* confidence: {:.4f}".format(confidence))
|
||||
|
||||
|
||||
def get_pytorch_dnn_prediction(original_net, preproc_img, imagenet_labels):
|
||||
original_net.eval()
|
||||
preproc_img = torch.FloatTensor(preproc_img)
|
||||
|
||||
# inference
|
||||
with torch.no_grad():
|
||||
out = original_net(preproc_img)
|
||||
|
||||
print("\nPyTorch model prediction: \n")
|
||||
print("* shape: ", out.shape)
|
||||
|
||||
# get the predicted class ID
|
||||
imagenet_class_id = torch.argmax(out, axis=1).item()
|
||||
print("* class ID: {}, label: {}".format(imagenet_class_id, imagenet_labels[imagenet_class_id]))
|
||||
|
||||
# get confidence
|
||||
confidence = out[0][imagenet_class_id]
|
||||
print("* confidence: {:.4f}".format(confidence.item()))
|
||||
|
||||
|
||||
def main():
|
||||
# initialize PyTorch ResNet-50 model
|
||||
original_model = models.resnet50(pretrained=True)
|
||||
|
||||
# get the path to the converted into ONNX PyTorch model
|
||||
full_model_path = get_pytorch_onnx_model(original_model)
|
||||
|
||||
# read converted .onnx model with OpenCV API
|
||||
opencv_net = cv2.dnn.readNetFromONNX(full_model_path)
|
||||
print("OpenCV model was successfully read. Layer IDs: \n", opencv_net.getLayerNames())
|
||||
|
||||
# get preprocessed image
|
||||
input_img = get_preprocessed_img("../data/squirrel_cls.jpg")
|
||||
|
||||
# get ImageNet labels
|
||||
imagenet_labels = get_imagenet_labels("../data/dnn/classification_classes_ILSVRC2012.txt")
|
||||
|
||||
# obtain OpenCV DNN predictions
|
||||
get_opencv_dnn_prediction(opencv_net, input_img, imagenet_labels)
|
||||
|
||||
# obtain original PyTorch ResNet50 predictions
|
||||
get_pytorch_dnn_prediction(original_model, input_img, imagenet_labels)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -0,0 +1,50 @@
|
||||
import os
|
||||
|
||||
import torch
|
||||
import torch.onnx
|
||||
from torch.autograd import Variable
|
||||
from torchvision import models
|
||||
|
||||
|
||||
def get_pytorch_onnx_model(original_model):
|
||||
# define the directory for further converted model save
|
||||
onnx_model_path = "models"
|
||||
# define the name of further converted model
|
||||
onnx_model_name = "resnet50.onnx"
|
||||
|
||||
# create directory for further converted model
|
||||
os.makedirs(onnx_model_path, exist_ok=True)
|
||||
|
||||
# get full path to the converted model
|
||||
full_model_path = os.path.join(onnx_model_path, onnx_model_name)
|
||||
|
||||
# generate model input
|
||||
generated_input = Variable(
|
||||
torch.randn(1, 3, 224, 224)
|
||||
)
|
||||
|
||||
# model export into ONNX format
|
||||
torch.onnx.export(
|
||||
original_model,
|
||||
generated_input,
|
||||
full_model_path,
|
||||
verbose=True,
|
||||
input_names=["input"],
|
||||
output_names=["output"],
|
||||
opset_version=11
|
||||
)
|
||||
|
||||
return full_model_path
|
||||
|
||||
|
||||
def main():
|
||||
# initialize PyTorch ResNet-50 model
|
||||
original_model = models.resnet50(pretrained=True)
|
||||
|
||||
# get the path to the converted into ONNX PyTorch model
|
||||
full_model_path = get_pytorch_onnx_model(original_model)
|
||||
print("PyTorch ResNet-50 model was successfully converted: ", full_model_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -0,0 +1,98 @@
|
||||
import os
|
||||
|
||||
import cv2
|
||||
import torch.onnx
|
||||
from torch.autograd import Variable
|
||||
|
||||
from ..common.abstract_model import AbstractModel, Framework
|
||||
from ..common.utils import DNN_LIB, get_full_model_path
|
||||
|
||||
CURRENT_LIB = "PyTorch"
|
||||
MODEL_FORMAT = ".onnx"
|
||||
|
||||
|
||||
class PyTorchModelPreparer(AbstractModel):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
height,
|
||||
width,
|
||||
model_name="default",
|
||||
original_model=object,
|
||||
batch_size=1,
|
||||
default_input_name="input",
|
||||
default_output_name="output"
|
||||
):
|
||||
self._height = height
|
||||
self._width = width
|
||||
self._model_name = model_name
|
||||
self._original_model = original_model
|
||||
self._batch_size = batch_size
|
||||
self._default_input_name = default_input_name
|
||||
self._default_output_name = default_output_name
|
||||
|
||||
self.model_path = self._set_model_path()
|
||||
self._dnn_model = self._set_dnn_model()
|
||||
|
||||
def _set_dnn_model(self):
|
||||
generated_input = Variable(torch.randn(
|
||||
self._batch_size, 3, self._height, self._width)
|
||||
)
|
||||
os.makedirs(self.model_path["path"], exist_ok=True)
|
||||
torch.onnx.export(
|
||||
self._original_model,
|
||||
generated_input,
|
||||
self.model_path["full_path"],
|
||||
verbose=True,
|
||||
input_names=[self._default_input_name],
|
||||
output_names=[self._default_output_name],
|
||||
opset_version=11
|
||||
)
|
||||
|
||||
return cv2.dnn.readNetFromONNX(self.model_path["full_path"])
|
||||
|
||||
def _set_model_path(self):
|
||||
model_to_save = self._model_name + MODEL_FORMAT
|
||||
return get_full_model_path(CURRENT_LIB.lower(), model_to_save)
|
||||
|
||||
def get_prepared_models(self):
|
||||
return {
|
||||
CURRENT_LIB + " " + self._model_name: self._original_model,
|
||||
DNN_LIB + " " + self._model_name: self._dnn_model
|
||||
}
|
||||
|
||||
|
||||
class PyTorchModelProcessor(Framework):
|
||||
def __init__(self, prepared_model, model_name):
|
||||
self._prepared_model = prepared_model
|
||||
self._name = model_name
|
||||
|
||||
def get_output(self, input_blob):
|
||||
tensor = torch.FloatTensor(input_blob)
|
||||
self._prepared_model.eval()
|
||||
|
||||
with torch.no_grad():
|
||||
model_out = self._prepared_model(tensor)
|
||||
|
||||
# segmentation case
|
||||
if len(model_out) == 2:
|
||||
model_out = model_out['out']
|
||||
|
||||
out = model_out.detach().numpy()
|
||||
return out
|
||||
|
||||
def get_name(self):
|
||||
return self._name
|
||||
|
||||
|
||||
class PyTorchDnnModelProcessor(Framework):
|
||||
def __init__(self, prepared_dnn_model, model_name):
|
||||
self._prepared_dnn_model = prepared_dnn_model
|
||||
self._name = model_name
|
||||
|
||||
def get_output(self, input_blob):
|
||||
self._prepared_dnn_model.setInput(input_blob, '')
|
||||
return self._prepared_dnn_model.forward()
|
||||
|
||||
def get_name(self):
|
||||
return self._name
|
||||
Reference in New Issue
Block a user