init - 初始化项目
This commit is contained in:
70
modules/stitching/test/test_exposure_compensate.cpp
Normal file
70
modules/stitching/test/test_exposure_compensate.cpp
Normal file
@@ -0,0 +1,70 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
namespace opencv_test {
|
||||
namespace {
|
||||
|
||||
double minPSNR(UMat src1, UMat src2)
|
||||
{
|
||||
std::vector<UMat> src1_channels, src2_channels;
|
||||
split(src1, src1_channels);
|
||||
split(src2, src2_channels);
|
||||
|
||||
double psnr = cvtest::PSNR(src1_channels[0], src2_channels[0]);
|
||||
psnr = std::min(psnr, cvtest::PSNR(src1_channels[1], src2_channels[1]));
|
||||
return std::min(psnr, cvtest::PSNR(src1_channels[2], src2_channels[2]));
|
||||
}
|
||||
|
||||
TEST(ExposureCompensate, SimilarityThreshold)
|
||||
{
|
||||
UMat source;
|
||||
imread(cvtest::TS::ptr()->get_data_path() + "stitching/s1.jpg").copyTo(source);
|
||||
|
||||
UMat image1 = source.clone();
|
||||
UMat image2 = source.clone();
|
||||
|
||||
// Add a big artifact
|
||||
image2(Rect(150, 150, 100, 100)).setTo(Scalar(0, 0, 255));
|
||||
|
||||
UMat mask(image1.size(), CV_8U);
|
||||
mask.setTo(255);
|
||||
|
||||
detail::BlocksChannelsCompensator compensator;
|
||||
compensator.setNrGainsFilteringIterations(0); // makes it more clear
|
||||
|
||||
// Feed the compensator, image 1 and 2 are perfectly
|
||||
// identical, except for the red artifact in image 2
|
||||
// Apart from that artifact, there is no exposure to compensate
|
||||
compensator.setSimilarityThreshold(1);
|
||||
uchar xff = 255;
|
||||
compensator.feed(
|
||||
{{}, {}},
|
||||
{image1, image2},
|
||||
{{mask, xff}, {mask, xff}}
|
||||
);
|
||||
// Verify that the artifact in image 2 did create
|
||||
// an artifact in image1 during the exposure compensation
|
||||
UMat image1_result = image1.clone();
|
||||
compensator.apply(0, {}, image1_result, mask);
|
||||
double psnr_no_similarity_mask = minPSNR(image1, image1_result);
|
||||
EXPECT_LT(psnr_no_similarity_mask, 45);
|
||||
|
||||
// Add a similarity threshold and verify that
|
||||
// the artifact in image1 is gone
|
||||
compensator.setSimilarityThreshold(0.1);
|
||||
compensator.feed(
|
||||
{{}, {}},
|
||||
{image1, image2},
|
||||
{{mask, xff}, {mask, xff}}
|
||||
);
|
||||
image1_result = image1.clone();
|
||||
compensator.apply(0, {}, image1_result, mask);
|
||||
double psnr_similarity_mask = minPSNR(image1, image1_result);
|
||||
EXPECT_GT(psnr_similarity_mask, 300);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
} // namespace opencv_test
|
||||
Reference in New Issue
Block a user