init - 初始化项目
This commit is contained in:
398
modules/gapi/perf/common/gapi_video_perf_tests_inl.hpp
Normal file
398
modules/gapi/perf/common/gapi_video_perf_tests_inl.hpp
Normal file
@@ -0,0 +1,398 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
//
|
||||
// Copyright (C) 2020 Intel Corporation
|
||||
|
||||
#ifndef OPENCV_GAPI_VIDEO_PERF_TESTS_INL_HPP
|
||||
#define OPENCV_GAPI_VIDEO_PERF_TESTS_INL_HPP
|
||||
|
||||
#include <iostream>
|
||||
|
||||
#include "gapi_video_perf_tests.hpp"
|
||||
|
||||
namespace opencv_test
|
||||
{
|
||||
|
||||
using namespace perf;
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
PERF_TEST_P_(BuildOptFlowPyramidPerfTest, TestPerformance)
|
||||
{
|
||||
std::vector<Mat> outPyrOCV, outPyrGAPI;
|
||||
int outMaxLevelOCV = 0, outMaxLevelGAPI = 0;
|
||||
Scalar outMaxLevelSc;
|
||||
|
||||
BuildOpticalFlowPyramidTestParams params;
|
||||
std::tie(params.fileName, params.winSize,
|
||||
params.maxLevel, params.withDerivatives,
|
||||
params.pyrBorder, params.derivBorder,
|
||||
params.tryReuseInputImage, params.compileArgs) = GetParam();
|
||||
|
||||
BuildOpticalFlowPyramidTestOutput outOCV { outPyrOCV, outMaxLevelOCV };
|
||||
BuildOpticalFlowPyramidTestOutput outGAPI { outPyrGAPI, outMaxLevelGAPI };
|
||||
|
||||
GComputation c = runOCVnGAPIBuildOptFlowPyramid(*this, params, outOCV, outGAPI);
|
||||
|
||||
declare.in(in_mat1).out(outPyrGAPI);
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
c.apply(cv::gin(in_mat1), cv::gout(outPyrGAPI, outMaxLevelSc));
|
||||
}
|
||||
outMaxLevelGAPI = static_cast<int>(outMaxLevelSc[0]);
|
||||
|
||||
// Comparison //////////////////////////////////////////////////////////////
|
||||
compareOutputPyramids(outGAPI, outOCV);
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
PERF_TEST_P_(OptFlowLKPerfTest, TestPerformance)
|
||||
{
|
||||
std::vector<cv::Point2f> outPtsOCV, outPtsGAPI, inPts;
|
||||
std::vector<uchar> outStatusOCV, outStatusGAPI;
|
||||
std::vector<float> outErrOCV, outErrGAPI;
|
||||
|
||||
OptFlowLKTestParams params;
|
||||
std::tie(params.fileNamePattern, params.channels,
|
||||
params.pointsNum, params.winSize, params.criteria,
|
||||
params.compileArgs) = GetParam();
|
||||
|
||||
OptFlowLKTestOutput outOCV { outPtsOCV, outStatusOCV, outErrOCV };
|
||||
OptFlowLKTestOutput outGAPI { outPtsGAPI, outStatusGAPI, outErrGAPI };
|
||||
|
||||
cv::GComputation c = runOCVnGAPIOptFlowLK(*this, inPts, params, outOCV, outGAPI);
|
||||
|
||||
declare.in(in_mat1, in_mat2, inPts).out(outPtsGAPI, outStatusGAPI, outErrGAPI);
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
c.apply(cv::gin(in_mat1, in_mat2, inPts, std::vector<cv::Point2f>{ }),
|
||||
cv::gout(outPtsGAPI, outStatusGAPI, outErrGAPI));
|
||||
}
|
||||
|
||||
// Comparison //////////////////////////////////////////////////////////////
|
||||
compareOutputsOptFlow(outGAPI, outOCV);
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
PERF_TEST_P_(OptFlowLKForPyrPerfTest, TestPerformance)
|
||||
{
|
||||
std::vector<cv::Mat> inPyr1, inPyr2;
|
||||
std::vector<cv::Point2f> outPtsOCV, outPtsGAPI, inPts;
|
||||
std::vector<uchar> outStatusOCV, outStatusGAPI;
|
||||
std::vector<float> outErrOCV, outErrGAPI;
|
||||
|
||||
bool withDeriv = false;
|
||||
OptFlowLKTestParams params;
|
||||
std::tie(params.fileNamePattern, params.channels,
|
||||
params.pointsNum, params.winSize, params.criteria,
|
||||
withDeriv, params.compileArgs) = GetParam();
|
||||
|
||||
OptFlowLKTestInput<std::vector<cv::Mat>> in { inPyr1, inPyr2, inPts };
|
||||
OptFlowLKTestOutput outOCV { outPtsOCV, outStatusOCV, outErrOCV };
|
||||
OptFlowLKTestOutput outGAPI { outPtsGAPI, outStatusGAPI, outErrGAPI };
|
||||
|
||||
cv::GComputation c = runOCVnGAPIOptFlowLKForPyr(*this, in, params, withDeriv, outOCV, outGAPI);
|
||||
|
||||
declare.in(inPyr1, inPyr2, inPts).out(outPtsGAPI, outStatusGAPI, outErrGAPI);
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
c.apply(cv::gin(inPyr1, inPyr2, inPts, std::vector<cv::Point2f>{ }),
|
||||
cv::gout(outPtsGAPI, outStatusGAPI, outErrGAPI));
|
||||
}
|
||||
|
||||
// Comparison //////////////////////////////////////////////////////////////
|
||||
compareOutputsOptFlow(outGAPI, outOCV);
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
PERF_TEST_P_(BuildPyr_CalcOptFlow_PipelinePerfTest, TestPerformance)
|
||||
{
|
||||
std::vector<Point2f> outPtsOCV, outPtsGAPI, inPts;
|
||||
std::vector<uchar> outStatusOCV, outStatusGAPI;
|
||||
std::vector<float> outErrOCV, outErrGAPI;
|
||||
|
||||
BuildOpticalFlowPyramidTestParams params;
|
||||
params.pyrBorder = BORDER_DEFAULT;
|
||||
params.derivBorder = BORDER_DEFAULT;
|
||||
params.tryReuseInputImage = true;
|
||||
std::tie(params.fileName, params.winSize,
|
||||
params.maxLevel, params.withDerivatives,
|
||||
params.compileArgs) = GetParam();
|
||||
|
||||
auto customKernel = gapi::kernels<GCPUMinScalar>();
|
||||
auto kernels = gapi::combine(customKernel,
|
||||
params.compileArgs[0].get<gapi::GKernelPackage>());
|
||||
params.compileArgs = compile_args(kernels);
|
||||
|
||||
OptFlowLKTestOutput outOCV { outPtsOCV, outStatusOCV, outErrOCV };
|
||||
OptFlowLKTestOutput outGAPI { outPtsGAPI, outStatusGAPI, outErrGAPI };
|
||||
|
||||
cv::GComputation c = runOCVnGAPIOptFlowPipeline(*this, params, outOCV, outGAPI, inPts);
|
||||
|
||||
declare.in(in_mat1, in_mat2, inPts).out(outPtsGAPI, outStatusGAPI, outErrGAPI);
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
c.apply(cv::gin(in_mat1, in_mat2, inPts, std::vector<cv::Point2f>{ }),
|
||||
cv::gout(outPtsGAPI, outStatusGAPI, outErrGAPI));
|
||||
}
|
||||
|
||||
// Comparison //////////////////////////////////////////////////////////////
|
||||
compareOutputsOptFlow(outGAPI, outOCV);
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
#ifdef HAVE_OPENCV_VIDEO
|
||||
|
||||
PERF_TEST_P_(BackgroundSubtractorPerfTest, TestPerformance)
|
||||
{
|
||||
namespace gvideo = cv::gapi::video;
|
||||
initTestDataPath();
|
||||
|
||||
gvideo::BackgroundSubtractorType opType;
|
||||
std::string filePath = "";
|
||||
bool detectShadows = false;
|
||||
double learningRate = -1.;
|
||||
std::size_t testNumFrames = 0;
|
||||
cv::GCompileArgs compileArgs;
|
||||
CompareMats cmpF;
|
||||
|
||||
std::tie(opType, filePath, detectShadows, learningRate, testNumFrames,
|
||||
compileArgs, cmpF) = GetParam();
|
||||
|
||||
const int histLength = 500;
|
||||
double thr = -1;
|
||||
switch (opType)
|
||||
{
|
||||
case gvideo::TYPE_BS_MOG2:
|
||||
{
|
||||
thr = 16.;
|
||||
break;
|
||||
}
|
||||
case gvideo::TYPE_BS_KNN:
|
||||
{
|
||||
thr = 400.;
|
||||
break;
|
||||
}
|
||||
default:
|
||||
FAIL() << "unsupported type of BackgroundSubtractor";
|
||||
}
|
||||
const gvideo::BackgroundSubtractorParams bsp(opType, histLength, thr, detectShadows,
|
||||
learningRate);
|
||||
|
||||
// Retrieving frames
|
||||
std::vector<cv::Mat> frames;
|
||||
frames.reserve(testNumFrames);
|
||||
{
|
||||
cv::Mat frame;
|
||||
cv::VideoCapture cap;
|
||||
if (!cap.open(findDataFile(filePath)))
|
||||
throw SkipTestException("Video file can not be opened");
|
||||
for (std::size_t i = 0; i < testNumFrames && cap.read(frame); i++)
|
||||
{
|
||||
frames.push_back(frame);
|
||||
}
|
||||
}
|
||||
GAPI_Assert(testNumFrames == frames.size() && "Can't read required number of frames");
|
||||
|
||||
// G-API graph declaration
|
||||
cv::GMat in;
|
||||
cv::GMat out = cv::gapi::BackgroundSubtractor(in, bsp);
|
||||
cv::GComputation c(cv::GIn(in), cv::GOut(out));
|
||||
auto cc = c.compile(cv::descr_of(frames[0]), std::move(compileArgs));
|
||||
|
||||
cv::Mat gapiForeground;
|
||||
TEST_CYCLE()
|
||||
{
|
||||
cc.prepareForNewStream();
|
||||
for (size_t i = 0; i < testNumFrames; i++)
|
||||
{
|
||||
cc(cv::gin(frames[i]), cv::gout(gapiForeground));
|
||||
}
|
||||
}
|
||||
|
||||
// OpenCV Background Subtractor declaration
|
||||
cv::Ptr<cv::BackgroundSubtractor> pOCVBackSub;
|
||||
if (opType == gvideo::TYPE_BS_MOG2)
|
||||
pOCVBackSub = cv::createBackgroundSubtractorMOG2(histLength, thr, detectShadows);
|
||||
else if (opType == gvideo::TYPE_BS_KNN)
|
||||
pOCVBackSub = cv::createBackgroundSubtractorKNN(histLength, thr, detectShadows);
|
||||
cv::Mat ocvForeground;
|
||||
for (size_t i = 0; i < testNumFrames; i++)
|
||||
{
|
||||
pOCVBackSub->apply(frames[i], ocvForeground, learningRate);
|
||||
}
|
||||
// Validation
|
||||
EXPECT_TRUE(cmpF(gapiForeground, ocvForeground));
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
||||
inline void generateInputKalman(const int mDim, const MatType2& type,
|
||||
const size_t testNumMeasurements, const bool receiveRandMeas,
|
||||
std::vector<bool>& haveMeasurements,
|
||||
std::vector<cv::Mat>& measurements)
|
||||
{
|
||||
cv::RNG& rng = cv::theRNG();
|
||||
measurements.clear();
|
||||
haveMeasurements = std::vector<bool>(testNumMeasurements, true);
|
||||
for (size_t i = 0; i < testNumMeasurements; i++)
|
||||
{
|
||||
if (receiveRandMeas)
|
||||
{
|
||||
haveMeasurements[i] = rng(2u) == 1; // returns 0 or 1 - whether we have measurement
|
||||
// at this iteration or not
|
||||
} // if not - testing the slowest case in which we have measurements at every iteration
|
||||
|
||||
cv::Mat measurement = cv::Mat::zeros(mDim, 1, type);
|
||||
if (haveMeasurements[i])
|
||||
{
|
||||
cv::randu(measurement, cv::Scalar::all(-1), cv::Scalar::all(1));
|
||||
}
|
||||
measurements.push_back(measurement.clone());
|
||||
}
|
||||
}
|
||||
|
||||
inline void generateInputKalman(const int mDim, const int cDim, const MatType2& type,
|
||||
const size_t testNumMeasurements, const bool receiveRandMeas,
|
||||
std::vector<bool>& haveMeasurements,
|
||||
std::vector<cv::Mat>& measurements,
|
||||
std::vector<cv::Mat>& ctrls)
|
||||
{
|
||||
generateInputKalman(mDim, type, testNumMeasurements, receiveRandMeas,
|
||||
haveMeasurements, measurements);
|
||||
ctrls.clear();
|
||||
cv::Mat ctrl(cDim, 1, type);
|
||||
for (size_t i = 0; i < testNumMeasurements; i++)
|
||||
{
|
||||
cv::randu(ctrl, cv::Scalar::all(-1), cv::Scalar::all(1));
|
||||
ctrls.push_back(ctrl.clone());
|
||||
}
|
||||
}
|
||||
|
||||
PERF_TEST_P_(KalmanFilterControlPerfTest, TestPerformance)
|
||||
{
|
||||
MatType2 type = -1;
|
||||
int dDim = -1, mDim = -1;
|
||||
size_t testNumMeasurements = 0;
|
||||
bool receiveRandMeas = true;
|
||||
cv::GCompileArgs compileArgs;
|
||||
std::tie(type, dDim, mDim, testNumMeasurements, receiveRandMeas, compileArgs) = GetParam();
|
||||
|
||||
const int cDim = 2;
|
||||
cv::gapi::KalmanParams kp;
|
||||
initKalmanParams(type, dDim, mDim, cDim, kp);
|
||||
|
||||
// Generating input
|
||||
std::vector<bool> haveMeasurements;
|
||||
std::vector<cv::Mat> measurements, ctrls;
|
||||
generateInputKalman(mDim, cDim, type, testNumMeasurements, receiveRandMeas,
|
||||
haveMeasurements, measurements, ctrls);
|
||||
|
||||
// G-API graph declaration
|
||||
cv::GMat m, ctrl;
|
||||
cv::GOpaque<bool> have_m;
|
||||
cv::GMat out = cv::gapi::KalmanFilter(m, have_m, ctrl, kp);
|
||||
cv::GComputation c(cv::GIn(m, have_m, ctrl), cv::GOut(out));
|
||||
auto cc = c.compile(
|
||||
cv::descr_of(cv::gin(cv::Mat(mDim, 1, type), true, cv::Mat(cDim, 1, type))),
|
||||
std::move(compileArgs));
|
||||
|
||||
cv::Mat gapiKState(dDim, 1, type);
|
||||
TEST_CYCLE()
|
||||
{
|
||||
cc.prepareForNewStream();
|
||||
for (size_t i = 0; i < testNumMeasurements; i++)
|
||||
{
|
||||
bool hvMeas = haveMeasurements[i];
|
||||
cc(cv::gin(measurements[i], hvMeas, ctrls[i]), cv::gout(gapiKState));
|
||||
}
|
||||
}
|
||||
|
||||
// OpenCV reference KalmanFilter initialization
|
||||
cv::KalmanFilter ocvKalman(dDim, mDim, cDim, type);
|
||||
initKalmanFilter(kp, true, ocvKalman);
|
||||
|
||||
cv::Mat ocvKState(dDim, 1, type);
|
||||
for (size_t i = 0; i < testNumMeasurements; i++)
|
||||
{
|
||||
ocvKState = ocvKalman.predict(ctrls[i]);
|
||||
if (haveMeasurements[i])
|
||||
ocvKState = ocvKalman.correct(measurements[i]);
|
||||
}
|
||||
// Validation
|
||||
EXPECT_TRUE(AbsExact().to_compare_f()(gapiKState, ocvKState));
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
PERF_TEST_P_(KalmanFilterNoControlPerfTest, TestPerformance)
|
||||
{
|
||||
MatType2 type = -1;
|
||||
int dDim = -1, mDim = -1;
|
||||
size_t testNumMeasurements = 0;
|
||||
bool receiveRandMeas = true;
|
||||
cv::GCompileArgs compileArgs;
|
||||
std::tie(type, dDim, mDim, testNumMeasurements, receiveRandMeas, compileArgs) = GetParam();
|
||||
|
||||
const int cDim = 0;
|
||||
cv::gapi::KalmanParams kp;
|
||||
initKalmanParams(type, dDim, mDim, cDim, kp);
|
||||
|
||||
// Generating input
|
||||
std::vector<bool> haveMeasurements;
|
||||
std::vector<cv::Mat> measurements;
|
||||
generateInputKalman(mDim, type, testNumMeasurements, receiveRandMeas,
|
||||
haveMeasurements, measurements);
|
||||
|
||||
// G-API graph declaration
|
||||
cv::GMat m;
|
||||
cv::GOpaque<bool> have_m;
|
||||
cv::GMat out = cv::gapi::KalmanFilter(m, have_m, kp);
|
||||
cv::GComputation c(cv::GIn(m, have_m), cv::GOut(out));
|
||||
auto cc = c.compile(cv::descr_of(cv::gin(cv::Mat(mDim, 1, type), true)),
|
||||
std::move(compileArgs));
|
||||
|
||||
cv::Mat gapiKState(dDim, 1, type);
|
||||
TEST_CYCLE()
|
||||
{
|
||||
cc.prepareForNewStream();
|
||||
for (size_t i = 0; i < testNumMeasurements; i++)
|
||||
{
|
||||
bool hvMeas = haveMeasurements[i];
|
||||
cc(cv::gin(measurements[i], hvMeas), cv::gout(gapiKState));
|
||||
}
|
||||
}
|
||||
|
||||
// OpenCV reference KalmanFilter declaration
|
||||
cv::KalmanFilter ocvKalman(dDim, mDim, cDim, type);
|
||||
initKalmanFilter(kp, false, ocvKalman);
|
||||
|
||||
cv::Mat ocvKState(dDim, 1, type);
|
||||
for (size_t i = 0; i < testNumMeasurements; i++)
|
||||
{
|
||||
ocvKState = ocvKalman.predict();
|
||||
if (haveMeasurements[i])
|
||||
ocvKState = ocvKalman.correct(measurements[i]);
|
||||
}
|
||||
// Validation
|
||||
EXPECT_TRUE(AbsExact().to_compare_f()(gapiKState, ocvKState));
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
#endif // HAVE_OPENCV_VIDEO
|
||||
|
||||
} // opencv_test
|
||||
|
||||
#endif // OPENCV_GAPI_VIDEO_PERF_TESTS_INL_HPP
|
||||
Reference in New Issue
Block a user