init - 初始化项目
This commit is contained in:
945
modules/calib3d/test/test_stereomatching.cpp
Normal file
945
modules/calib3d/test/test_stereomatching.cpp
Normal file
@@ -0,0 +1,945 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
/*
|
||||
This is a regression test for stereo matching algorithms. This test gets some quality metrics
|
||||
described in "A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms".
|
||||
Daniel Scharstein, Richard Szeliski
|
||||
*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
namespace opencv_test { namespace {
|
||||
|
||||
const float EVAL_BAD_THRESH = 1.f;
|
||||
const int EVAL_TEXTURELESS_WIDTH = 3;
|
||||
const float EVAL_TEXTURELESS_THRESH = 4.f;
|
||||
const float EVAL_DISP_THRESH = 1.f;
|
||||
const float EVAL_DISP_GAP = 2.f;
|
||||
const int EVAL_DISCONT_WIDTH = 9;
|
||||
const int EVAL_IGNORE_BORDER = 10;
|
||||
|
||||
const int ERROR_KINDS_COUNT = 6;
|
||||
|
||||
//============================== quality measuring functions =================================================
|
||||
|
||||
/*
|
||||
Calculate textureless regions of image (regions where the squared horizontal intensity gradient averaged over
|
||||
a square window of size=evalTexturelessWidth is below a threshold=evalTexturelessThresh) and textured regions.
|
||||
*/
|
||||
void computeTextureBasedMasks( const Mat& _img, Mat* texturelessMask, Mat* texturedMask,
|
||||
int texturelessWidth = EVAL_TEXTURELESS_WIDTH, float texturelessThresh = EVAL_TEXTURELESS_THRESH )
|
||||
{
|
||||
if( !texturelessMask && !texturedMask )
|
||||
return;
|
||||
if( _img.empty() )
|
||||
CV_Error( Error::StsBadArg, "img is empty" );
|
||||
|
||||
Mat img = _img;
|
||||
if( _img.channels() > 1)
|
||||
{
|
||||
Mat tmp; cvtColor( _img, tmp, COLOR_BGR2GRAY ); img = tmp;
|
||||
}
|
||||
Mat dxI; Sobel( img, dxI, CV_32FC1, 1, 0, 3 );
|
||||
Mat dxI2; pow( dxI / 8.f/*normalize*/, 2, dxI2 );
|
||||
Mat avgDxI2; boxFilter( dxI2, avgDxI2, CV_32FC1, Size(texturelessWidth,texturelessWidth) );
|
||||
|
||||
if( texturelessMask )
|
||||
*texturelessMask = avgDxI2 < texturelessThresh;
|
||||
if( texturedMask )
|
||||
*texturedMask = avgDxI2 >= texturelessThresh;
|
||||
}
|
||||
|
||||
void checkTypeAndSizeOfDisp( const Mat& dispMap, const Size* sz )
|
||||
{
|
||||
if( dispMap.empty() )
|
||||
CV_Error( Error::StsBadArg, "dispMap is empty" );
|
||||
if( dispMap.type() != CV_32FC1 )
|
||||
CV_Error( Error::StsBadArg, "dispMap must have CV_32FC1 type" );
|
||||
if( sz && (dispMap.rows != sz->height || dispMap.cols != sz->width) )
|
||||
CV_Error( Error::StsBadArg, "dispMap has incorrect size" );
|
||||
}
|
||||
|
||||
void checkTypeAndSizeOfMask( const Mat& mask, Size sz )
|
||||
{
|
||||
if( mask.empty() )
|
||||
CV_Error( Error::StsBadArg, "mask is empty" );
|
||||
if( mask.type() != CV_8UC1 )
|
||||
CV_Error( Error::StsBadArg, "mask must have CV_8UC1 type" );
|
||||
if( mask.rows != sz.height || mask.cols != sz.width )
|
||||
CV_Error( Error::StsBadArg, "mask has incorrect size" );
|
||||
}
|
||||
|
||||
void checkDispMapsAndUnknDispMasks( const Mat& leftDispMap, const Mat& rightDispMap,
|
||||
const Mat& leftUnknDispMask, const Mat& rightUnknDispMask )
|
||||
{
|
||||
// check type and size of disparity maps
|
||||
checkTypeAndSizeOfDisp( leftDispMap, 0 );
|
||||
if( !rightDispMap.empty() )
|
||||
{
|
||||
Size sz = leftDispMap.size();
|
||||
checkTypeAndSizeOfDisp( rightDispMap, &sz );
|
||||
}
|
||||
|
||||
// check size and type of unknown disparity maps
|
||||
if( !leftUnknDispMask.empty() )
|
||||
checkTypeAndSizeOfMask( leftUnknDispMask, leftDispMap.size() );
|
||||
if( !rightUnknDispMask.empty() )
|
||||
checkTypeAndSizeOfMask( rightUnknDispMask, rightDispMap.size() );
|
||||
|
||||
// check values of disparity maps (known disparity values musy be positive)
|
||||
double leftMinVal = 0, rightMinVal = 0;
|
||||
if( leftUnknDispMask.empty() )
|
||||
minMaxLoc( leftDispMap, &leftMinVal );
|
||||
else
|
||||
minMaxLoc( leftDispMap, &leftMinVal, 0, 0, 0, ~leftUnknDispMask );
|
||||
if( !rightDispMap.empty() )
|
||||
{
|
||||
if( rightUnknDispMask.empty() )
|
||||
minMaxLoc( rightDispMap, &rightMinVal );
|
||||
else
|
||||
minMaxLoc( rightDispMap, &rightMinVal, 0, 0, 0, ~rightUnknDispMask );
|
||||
}
|
||||
if( leftMinVal < 0 || rightMinVal < 0)
|
||||
CV_Error( Error::StsBadArg, "known disparity values must be positive" );
|
||||
}
|
||||
|
||||
/*
|
||||
Calculate occluded regions of reference image (left image) (regions that are occluded in the matching image (right image),
|
||||
i.e., where the forward-mapped disparity lands at a location with a larger (nearer) disparity) and non occluded regions.
|
||||
*/
|
||||
void computeOcclusionBasedMasks( const Mat& leftDisp, const Mat& _rightDisp,
|
||||
Mat* occludedMask, Mat* nonOccludedMask,
|
||||
const Mat& leftUnknDispMask = Mat(), const Mat& rightUnknDispMask = Mat(),
|
||||
float dispThresh = EVAL_DISP_THRESH )
|
||||
{
|
||||
if( !occludedMask && !nonOccludedMask )
|
||||
return;
|
||||
checkDispMapsAndUnknDispMasks( leftDisp, _rightDisp, leftUnknDispMask, rightUnknDispMask );
|
||||
|
||||
Mat rightDisp;
|
||||
if( _rightDisp.empty() )
|
||||
{
|
||||
if( !rightUnknDispMask.empty() )
|
||||
CV_Error( Error::StsBadArg, "rightUnknDispMask must be empty if _rightDisp is empty" );
|
||||
rightDisp.create(leftDisp.size(), CV_32FC1);
|
||||
rightDisp.setTo(Scalar::all(0) );
|
||||
for( int leftY = 0; leftY < leftDisp.rows; leftY++ )
|
||||
{
|
||||
for( int leftX = 0; leftX < leftDisp.cols; leftX++ )
|
||||
{
|
||||
if( !leftUnknDispMask.empty() && leftUnknDispMask.at<uchar>(leftY,leftX) )
|
||||
continue;
|
||||
float leftDispVal = leftDisp.at<float>(leftY, leftX);
|
||||
int rightX = leftX - cvRound(leftDispVal), rightY = leftY;
|
||||
if( rightX >= 0)
|
||||
rightDisp.at<float>(rightY,rightX) = max(rightDisp.at<float>(rightY,rightX), leftDispVal);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
_rightDisp.copyTo(rightDisp);
|
||||
|
||||
if( occludedMask )
|
||||
{
|
||||
occludedMask->create(leftDisp.size(), CV_8UC1);
|
||||
occludedMask->setTo(Scalar::all(0) );
|
||||
}
|
||||
if( nonOccludedMask )
|
||||
{
|
||||
nonOccludedMask->create(leftDisp.size(), CV_8UC1);
|
||||
nonOccludedMask->setTo(Scalar::all(0) );
|
||||
}
|
||||
for( int leftY = 0; leftY < leftDisp.rows; leftY++ )
|
||||
{
|
||||
for( int leftX = 0; leftX < leftDisp.cols; leftX++ )
|
||||
{
|
||||
if( !leftUnknDispMask.empty() && leftUnknDispMask.at<uchar>(leftY,leftX) )
|
||||
continue;
|
||||
float leftDispVal = leftDisp.at<float>(leftY, leftX);
|
||||
int rightX = leftX - cvRound(leftDispVal), rightY = leftY;
|
||||
if( rightX < 0 && occludedMask )
|
||||
occludedMask->at<uchar>(leftY, leftX) = 255;
|
||||
else
|
||||
{
|
||||
if( !rightUnknDispMask.empty() && rightUnknDispMask.at<uchar>(rightY,rightX) )
|
||||
continue;
|
||||
float rightDispVal = rightDisp.at<float>(rightY, rightX);
|
||||
if( rightDispVal > leftDispVal + dispThresh )
|
||||
{
|
||||
if( occludedMask )
|
||||
occludedMask->at<uchar>(leftY, leftX) = 255;
|
||||
}
|
||||
else
|
||||
{
|
||||
if( nonOccludedMask )
|
||||
nonOccludedMask->at<uchar>(leftY, leftX) = 255;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
Calculate depth discontinuty regions: pixels whose neiboring disparities differ by more than
|
||||
dispGap, dilated by window of width discontWidth.
|
||||
*/
|
||||
void computeDepthDiscontMask( const Mat& disp, Mat& depthDiscontMask, const Mat& unknDispMask = Mat(),
|
||||
float dispGap = EVAL_DISP_GAP, int discontWidth = EVAL_DISCONT_WIDTH )
|
||||
{
|
||||
if( disp.empty() )
|
||||
CV_Error( Error::StsBadArg, "disp is empty" );
|
||||
if( disp.type() != CV_32FC1 )
|
||||
CV_Error( Error::StsBadArg, "disp must have CV_32FC1 type" );
|
||||
if( !unknDispMask.empty() )
|
||||
checkTypeAndSizeOfMask( unknDispMask, disp.size() );
|
||||
|
||||
Mat curDisp; disp.copyTo( curDisp );
|
||||
if( !unknDispMask.empty() )
|
||||
curDisp.setTo( Scalar(std::numeric_limits<float>::min()), unknDispMask );
|
||||
Mat maxNeighbDisp; dilate( curDisp, maxNeighbDisp, Mat(3, 3, CV_8UC1, Scalar(1)) );
|
||||
if( !unknDispMask.empty() )
|
||||
curDisp.setTo( Scalar(std::numeric_limits<float>::max()), unknDispMask );
|
||||
Mat minNeighbDisp; erode( curDisp, minNeighbDisp, Mat(3, 3, CV_8UC1, Scalar(1)) );
|
||||
depthDiscontMask = max( (Mat)(maxNeighbDisp-disp), (Mat)(disp-minNeighbDisp) ) > dispGap;
|
||||
if( !unknDispMask.empty() )
|
||||
depthDiscontMask &= ~unknDispMask;
|
||||
dilate( depthDiscontMask, depthDiscontMask, Mat(discontWidth, discontWidth, CV_8UC1, Scalar(1)) );
|
||||
}
|
||||
|
||||
/*
|
||||
Get evaluation masks excluding a border.
|
||||
*/
|
||||
Mat getBorderedMask( Size maskSize, int border = EVAL_IGNORE_BORDER )
|
||||
{
|
||||
CV_Assert( border >= 0 );
|
||||
Mat mask(maskSize, CV_8UC1, Scalar(0));
|
||||
int w = maskSize.width - 2*border, h = maskSize.height - 2*border;
|
||||
if( w < 0 || h < 0 )
|
||||
mask.setTo(Scalar(0));
|
||||
else
|
||||
mask( Rect(Point(border,border),Size(w,h)) ).setTo(Scalar(255));
|
||||
return mask;
|
||||
}
|
||||
|
||||
/*
|
||||
Calculate root-mean-squared error between the computed disparity map (computedDisp) and ground truth map (groundTruthDisp).
|
||||
*/
|
||||
float dispRMS( const Mat& computedDisp, const Mat& groundTruthDisp, const Mat& mask )
|
||||
{
|
||||
checkTypeAndSizeOfDisp( groundTruthDisp, 0 );
|
||||
Size sz = groundTruthDisp.size();
|
||||
checkTypeAndSizeOfDisp( computedDisp, &sz );
|
||||
|
||||
int pointsCount = sz.height*sz.width;
|
||||
if( !mask.empty() )
|
||||
{
|
||||
checkTypeAndSizeOfMask( mask, sz );
|
||||
pointsCount = countNonZero(mask);
|
||||
}
|
||||
return 1.f/sqrt((float)pointsCount) * (float)cvtest::norm(computedDisp, groundTruthDisp, NORM_L2, mask);
|
||||
}
|
||||
|
||||
/*
|
||||
Calculate fraction of bad matching pixels.
|
||||
*/
|
||||
float badMatchPxlsFraction( const Mat& computedDisp, const Mat& groundTruthDisp, const Mat& mask,
|
||||
float _badThresh = EVAL_BAD_THRESH )
|
||||
{
|
||||
int badThresh = cvRound(_badThresh);
|
||||
checkTypeAndSizeOfDisp( groundTruthDisp, 0 );
|
||||
Size sz = groundTruthDisp.size();
|
||||
checkTypeAndSizeOfDisp( computedDisp, &sz );
|
||||
|
||||
Mat badPxlsMap;
|
||||
absdiff( computedDisp, groundTruthDisp, badPxlsMap );
|
||||
badPxlsMap = badPxlsMap > badThresh;
|
||||
int pointsCount = sz.height*sz.width;
|
||||
if( !mask.empty() )
|
||||
{
|
||||
checkTypeAndSizeOfMask( mask, sz );
|
||||
badPxlsMap = badPxlsMap & mask;
|
||||
pointsCount = countNonZero(mask);
|
||||
}
|
||||
return 1.f/pointsCount * countNonZero(badPxlsMap);
|
||||
}
|
||||
|
||||
//===================== regression test for stereo matching algorithms ==============================
|
||||
|
||||
const string ALGORITHMS_DIR = "stereomatching/algorithms/";
|
||||
const string DATASETS_DIR = "stereomatching/datasets/";
|
||||
const string DATASETS_FILE = "datasets.xml";
|
||||
|
||||
const string RUN_PARAMS_FILE = "_params.xml";
|
||||
const string RESULT_FILE = "_res.xml";
|
||||
|
||||
const string LEFT_IMG_NAME = "im2.png";
|
||||
const string RIGHT_IMG_NAME = "im6.png";
|
||||
const string TRUE_LEFT_DISP_NAME = "disp2.png";
|
||||
const string TRUE_RIGHT_DISP_NAME = "disp6.png";
|
||||
|
||||
string ERROR_PREFIXES[] = { "borderedAll",
|
||||
"borderedNoOccl",
|
||||
"borderedOccl",
|
||||
"borderedTextured",
|
||||
"borderedTextureless",
|
||||
"borderedDepthDiscont" }; // size of ERROR_KINDS_COUNT
|
||||
|
||||
string ROI_PREFIXES[] = { "roiX",
|
||||
"roiY",
|
||||
"roiWidth",
|
||||
"roiHeight" };
|
||||
|
||||
|
||||
const string RMS_STR = "RMS";
|
||||
const string BAD_PXLS_FRACTION_STR = "BadPxlsFraction";
|
||||
const string ROI_STR = "ValidDisparityROI";
|
||||
|
||||
class QualityEvalParams
|
||||
{
|
||||
public:
|
||||
QualityEvalParams() { setDefaults(); }
|
||||
QualityEvalParams( int _ignoreBorder )
|
||||
{
|
||||
setDefaults();
|
||||
ignoreBorder = _ignoreBorder;
|
||||
}
|
||||
void setDefaults()
|
||||
{
|
||||
badThresh = EVAL_BAD_THRESH;
|
||||
texturelessWidth = EVAL_TEXTURELESS_WIDTH;
|
||||
texturelessThresh = EVAL_TEXTURELESS_THRESH;
|
||||
dispThresh = EVAL_DISP_THRESH;
|
||||
dispGap = EVAL_DISP_GAP;
|
||||
discontWidth = EVAL_DISCONT_WIDTH;
|
||||
ignoreBorder = EVAL_IGNORE_BORDER;
|
||||
}
|
||||
float badThresh;
|
||||
int texturelessWidth;
|
||||
float texturelessThresh;
|
||||
float dispThresh;
|
||||
float dispGap;
|
||||
int discontWidth;
|
||||
int ignoreBorder;
|
||||
};
|
||||
|
||||
class CV_StereoMatchingTest : public cvtest::BaseTest
|
||||
{
|
||||
public:
|
||||
CV_StereoMatchingTest()
|
||||
{ rmsEps.resize( ERROR_KINDS_COUNT, 0.01f ); fracEps.resize( ERROR_KINDS_COUNT, 1.e-6f ); }
|
||||
protected:
|
||||
// assumed that left image is a reference image
|
||||
virtual int runStereoMatchingAlgorithm( const Mat& leftImg, const Mat& rightImg,
|
||||
Rect& calcROI, Mat& leftDisp, Mat& rightDisp, int caseIdx ) = 0; // return ignored border width
|
||||
|
||||
int readDatasetsParams( FileStorage& fs );
|
||||
virtual int readRunParams( FileStorage& fs );
|
||||
void writeErrors( const string& errName, const vector<float>& errors, FileStorage* fs = 0 );
|
||||
void writeROI( const Rect& calcROI, FileStorage* fs = 0 );
|
||||
void readErrors( FileNode& fn, const string& errName, vector<float>& errors );
|
||||
void readROI( FileNode& fn, Rect& trueROI );
|
||||
int compareErrors( const vector<float>& calcErrors, const vector<float>& validErrors,
|
||||
const vector<float>& eps, const string& errName );
|
||||
int compareROI( const Rect& calcROI, const Rect& validROI );
|
||||
int processStereoMatchingResults( FileStorage& fs, int caseIdx, bool isWrite,
|
||||
const Mat& leftImg, const Mat& rightImg,
|
||||
const Rect& calcROI,
|
||||
const Mat& trueLeftDisp, const Mat& trueRightDisp,
|
||||
const Mat& leftDisp, const Mat& rightDisp,
|
||||
const QualityEvalParams& qualityEvalParams );
|
||||
void run( int );
|
||||
|
||||
vector<float> rmsEps;
|
||||
vector<float> fracEps;
|
||||
|
||||
struct DatasetParams
|
||||
{
|
||||
int dispScaleFactor;
|
||||
int dispUnknVal;
|
||||
};
|
||||
map<string, DatasetParams> datasetsParams;
|
||||
|
||||
vector<string> caseNames;
|
||||
vector<string> caseDatasets;
|
||||
};
|
||||
|
||||
void CV_StereoMatchingTest::run(int)
|
||||
{
|
||||
string dataPath = ts->get_data_path() + "cv/";
|
||||
string algorithmName = name;
|
||||
assert( !algorithmName.empty() );
|
||||
if( dataPath.empty() )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "dataPath is empty" );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ARG_CHECK );
|
||||
return;
|
||||
}
|
||||
|
||||
FileStorage datasetsFS( dataPath + DATASETS_DIR + DATASETS_FILE, FileStorage::READ );
|
||||
int code = readDatasetsParams( datasetsFS );
|
||||
if( code != cvtest::TS::OK )
|
||||
{
|
||||
ts->set_failed_test_info( code );
|
||||
return;
|
||||
}
|
||||
FileStorage runParamsFS( dataPath + ALGORITHMS_DIR + algorithmName + RUN_PARAMS_FILE, FileStorage::READ );
|
||||
code = readRunParams( runParamsFS );
|
||||
if( code != cvtest::TS::OK )
|
||||
{
|
||||
ts->set_failed_test_info( code );
|
||||
return;
|
||||
}
|
||||
|
||||
string fullResultFilename = dataPath + ALGORITHMS_DIR + algorithmName + RESULT_FILE;
|
||||
FileStorage resFS( fullResultFilename, FileStorage::READ );
|
||||
bool isWrite = true; // write or compare results
|
||||
if( resFS.isOpened() )
|
||||
isWrite = false;
|
||||
else
|
||||
{
|
||||
resFS.open( fullResultFilename, FileStorage::WRITE );
|
||||
if( !resFS.isOpened() )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "file %s can not be read or written\n", fullResultFilename.c_str() );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ARG_CHECK );
|
||||
return;
|
||||
}
|
||||
resFS << "stereo_matching" << "{";
|
||||
}
|
||||
|
||||
int progress = 0, caseCount = (int)caseNames.size();
|
||||
for( int ci = 0; ci < caseCount; ci++)
|
||||
{
|
||||
progress = update_progress( progress, ci, caseCount, 0 );
|
||||
printf("progress: %d%%\n", progress);
|
||||
fflush(stdout);
|
||||
string datasetName = caseDatasets[ci];
|
||||
string datasetFullDirName = dataPath + DATASETS_DIR + datasetName + "/";
|
||||
Mat leftImg = imread(datasetFullDirName + LEFT_IMG_NAME);
|
||||
Mat rightImg = imread(datasetFullDirName + RIGHT_IMG_NAME);
|
||||
Mat trueLeftDisp = imread(datasetFullDirName + TRUE_LEFT_DISP_NAME, 0);
|
||||
Mat trueRightDisp = imread(datasetFullDirName + TRUE_RIGHT_DISP_NAME, 0);
|
||||
Rect calcROI;
|
||||
|
||||
if( leftImg.empty() || rightImg.empty() || trueLeftDisp.empty() )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "images or left ground-truth disparities of dataset %s can not be read", datasetName.c_str() );
|
||||
code = cvtest::TS::FAIL_INVALID_TEST_DATA;
|
||||
continue;
|
||||
}
|
||||
int dispScaleFactor = datasetsParams[datasetName].dispScaleFactor;
|
||||
Mat tmp;
|
||||
|
||||
trueLeftDisp.convertTo( tmp, CV_32FC1, 1.f/dispScaleFactor );
|
||||
trueLeftDisp = tmp;
|
||||
tmp.release();
|
||||
|
||||
if( !trueRightDisp.empty() )
|
||||
{
|
||||
trueRightDisp.convertTo( tmp, CV_32FC1, 1.f/dispScaleFactor );
|
||||
trueRightDisp = tmp;
|
||||
tmp.release();
|
||||
}
|
||||
|
||||
Mat leftDisp, rightDisp;
|
||||
int ignBorder = max(runStereoMatchingAlgorithm(leftImg, rightImg, calcROI, leftDisp, rightDisp, ci), EVAL_IGNORE_BORDER);
|
||||
|
||||
leftDisp.convertTo( tmp, CV_32FC1 );
|
||||
leftDisp = tmp;
|
||||
tmp.release();
|
||||
|
||||
rightDisp.convertTo( tmp, CV_32FC1 );
|
||||
rightDisp = tmp;
|
||||
tmp.release();
|
||||
|
||||
int tempCode = processStereoMatchingResults( resFS, ci, isWrite,
|
||||
leftImg, rightImg, calcROI, trueLeftDisp, trueRightDisp, leftDisp, rightDisp, QualityEvalParams(ignBorder));
|
||||
code = tempCode==cvtest::TS::OK ? code : tempCode;
|
||||
}
|
||||
|
||||
if( isWrite )
|
||||
resFS << "}"; // "stereo_matching"
|
||||
|
||||
ts->set_failed_test_info( code );
|
||||
}
|
||||
|
||||
void calcErrors( const Mat& leftImg, const Mat& /*rightImg*/,
|
||||
const Mat& trueLeftDisp, const Mat& trueRightDisp,
|
||||
const Mat& trueLeftUnknDispMask, const Mat& trueRightUnknDispMask,
|
||||
const Mat& calcLeftDisp, const Mat& /*calcRightDisp*/,
|
||||
vector<float>& rms, vector<float>& badPxlsFractions,
|
||||
const QualityEvalParams& qualityEvalParams )
|
||||
{
|
||||
Mat texturelessMask, texturedMask;
|
||||
computeTextureBasedMasks( leftImg, &texturelessMask, &texturedMask,
|
||||
qualityEvalParams.texturelessWidth, qualityEvalParams.texturelessThresh );
|
||||
Mat occludedMask, nonOccludedMask;
|
||||
computeOcclusionBasedMasks( trueLeftDisp, trueRightDisp, &occludedMask, &nonOccludedMask,
|
||||
trueLeftUnknDispMask, trueRightUnknDispMask, qualityEvalParams.dispThresh);
|
||||
Mat depthDiscontMask;
|
||||
computeDepthDiscontMask( trueLeftDisp, depthDiscontMask, trueLeftUnknDispMask,
|
||||
qualityEvalParams.dispGap, qualityEvalParams.discontWidth);
|
||||
|
||||
Mat borderedKnownMask = getBorderedMask( leftImg.size(), qualityEvalParams.ignoreBorder ) & ~trueLeftUnknDispMask;
|
||||
|
||||
nonOccludedMask &= borderedKnownMask;
|
||||
occludedMask &= borderedKnownMask;
|
||||
texturedMask &= nonOccludedMask; // & borderedKnownMask
|
||||
texturelessMask &= nonOccludedMask; // & borderedKnownMask
|
||||
depthDiscontMask &= nonOccludedMask; // & borderedKnownMask
|
||||
|
||||
rms.resize(ERROR_KINDS_COUNT);
|
||||
rms[0] = dispRMS( calcLeftDisp, trueLeftDisp, borderedKnownMask );
|
||||
rms[1] = dispRMS( calcLeftDisp, trueLeftDisp, nonOccludedMask );
|
||||
rms[2] = dispRMS( calcLeftDisp, trueLeftDisp, occludedMask );
|
||||
rms[3] = dispRMS( calcLeftDisp, trueLeftDisp, texturedMask );
|
||||
rms[4] = dispRMS( calcLeftDisp, trueLeftDisp, texturelessMask );
|
||||
rms[5] = dispRMS( calcLeftDisp, trueLeftDisp, depthDiscontMask );
|
||||
|
||||
badPxlsFractions.resize(ERROR_KINDS_COUNT);
|
||||
badPxlsFractions[0] = badMatchPxlsFraction( calcLeftDisp, trueLeftDisp, borderedKnownMask, qualityEvalParams.badThresh );
|
||||
badPxlsFractions[1] = badMatchPxlsFraction( calcLeftDisp, trueLeftDisp, nonOccludedMask, qualityEvalParams.badThresh );
|
||||
badPxlsFractions[2] = badMatchPxlsFraction( calcLeftDisp, trueLeftDisp, occludedMask, qualityEvalParams.badThresh );
|
||||
badPxlsFractions[3] = badMatchPxlsFraction( calcLeftDisp, trueLeftDisp, texturedMask, qualityEvalParams.badThresh );
|
||||
badPxlsFractions[4] = badMatchPxlsFraction( calcLeftDisp, trueLeftDisp, texturelessMask, qualityEvalParams.badThresh );
|
||||
badPxlsFractions[5] = badMatchPxlsFraction( calcLeftDisp, trueLeftDisp, depthDiscontMask, qualityEvalParams.badThresh );
|
||||
}
|
||||
|
||||
int CV_StereoMatchingTest::processStereoMatchingResults( FileStorage& fs, int caseIdx, bool isWrite,
|
||||
const Mat& leftImg, const Mat& rightImg,
|
||||
const Rect& calcROI,
|
||||
const Mat& trueLeftDisp, const Mat& trueRightDisp,
|
||||
const Mat& leftDisp, const Mat& rightDisp,
|
||||
const QualityEvalParams& qualityEvalParams )
|
||||
{
|
||||
// rightDisp is not used in current test virsion
|
||||
int code = cvtest::TS::OK;
|
||||
assert( fs.isOpened() );
|
||||
assert( trueLeftDisp.type() == CV_32FC1 );
|
||||
assert( trueRightDisp.empty() || trueRightDisp.type() == CV_32FC1 );
|
||||
assert( leftDisp.type() == CV_32FC1 && (rightDisp.empty() || rightDisp.type() == CV_32FC1) );
|
||||
|
||||
// get masks for unknown ground truth disparity values
|
||||
Mat leftUnknMask, rightUnknMask;
|
||||
DatasetParams params = datasetsParams[caseDatasets[caseIdx]];
|
||||
absdiff( trueLeftDisp, Scalar(params.dispUnknVal), leftUnknMask );
|
||||
leftUnknMask = leftUnknMask < std::numeric_limits<float>::epsilon();
|
||||
assert(leftUnknMask.type() == CV_8UC1);
|
||||
if( !trueRightDisp.empty() )
|
||||
{
|
||||
absdiff( trueRightDisp, Scalar(params.dispUnknVal), rightUnknMask );
|
||||
rightUnknMask = rightUnknMask < std::numeric_limits<float>::epsilon();
|
||||
assert(rightUnknMask.type() == CV_8UC1);
|
||||
}
|
||||
|
||||
// calculate errors
|
||||
vector<float> rmss, badPxlsFractions;
|
||||
calcErrors( leftImg, rightImg, trueLeftDisp, trueRightDisp, leftUnknMask, rightUnknMask,
|
||||
leftDisp, rightDisp, rmss, badPxlsFractions, qualityEvalParams );
|
||||
|
||||
if( isWrite )
|
||||
{
|
||||
fs << caseNames[caseIdx] << "{";
|
||||
fs.writeComment( RMS_STR, 0 );
|
||||
writeErrors( RMS_STR, rmss, &fs );
|
||||
fs.writeComment( BAD_PXLS_FRACTION_STR, 0 );
|
||||
writeErrors( BAD_PXLS_FRACTION_STR, badPxlsFractions, &fs );
|
||||
fs.writeComment( ROI_STR, 0 );
|
||||
writeROI( calcROI, &fs );
|
||||
fs << "}"; // datasetName
|
||||
}
|
||||
else // compare
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "\nquality of case named %s\n", caseNames[caseIdx].c_str() );
|
||||
ts->printf( cvtest::TS::LOG, "%s\n", RMS_STR.c_str() );
|
||||
writeErrors( RMS_STR, rmss );
|
||||
ts->printf( cvtest::TS::LOG, "%s\n", BAD_PXLS_FRACTION_STR.c_str() );
|
||||
writeErrors( BAD_PXLS_FRACTION_STR, badPxlsFractions );
|
||||
ts->printf( cvtest::TS::LOG, "%s\n", ROI_STR.c_str() );
|
||||
writeROI( calcROI );
|
||||
|
||||
FileNode fn = fs.getFirstTopLevelNode()[caseNames[caseIdx]];
|
||||
vector<float> validRmss, validBadPxlsFractions;
|
||||
Rect validROI;
|
||||
|
||||
readErrors( fn, RMS_STR, validRmss );
|
||||
readErrors( fn, BAD_PXLS_FRACTION_STR, validBadPxlsFractions );
|
||||
readROI( fn, validROI );
|
||||
int tempCode = compareErrors( rmss, validRmss, rmsEps, RMS_STR );
|
||||
code = tempCode==cvtest::TS::OK ? code : tempCode;
|
||||
tempCode = compareErrors( badPxlsFractions, validBadPxlsFractions, fracEps, BAD_PXLS_FRACTION_STR );
|
||||
code = tempCode==cvtest::TS::OK ? code : tempCode;
|
||||
tempCode = compareROI( calcROI, validROI );
|
||||
code = tempCode==cvtest::TS::OK ? code : tempCode;
|
||||
}
|
||||
return code;
|
||||
}
|
||||
|
||||
int CV_StereoMatchingTest::readDatasetsParams( FileStorage& fs )
|
||||
{
|
||||
if( !fs.isOpened() )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "datasetsParams can not be read " );
|
||||
return cvtest::TS::FAIL_INVALID_TEST_DATA;
|
||||
}
|
||||
datasetsParams.clear();
|
||||
FileNode fn = fs.getFirstTopLevelNode();
|
||||
assert(fn.isSeq());
|
||||
for( int i = 0; i < (int)fn.size(); i+=3 )
|
||||
{
|
||||
String _name = fn[i];
|
||||
DatasetParams params;
|
||||
String sf = fn[i+1]; params.dispScaleFactor = atoi(sf.c_str());
|
||||
String uv = fn[i+2]; params.dispUnknVal = atoi(uv.c_str());
|
||||
datasetsParams[_name] = params;
|
||||
}
|
||||
return cvtest::TS::OK;
|
||||
}
|
||||
|
||||
int CV_StereoMatchingTest::readRunParams( FileStorage& fs )
|
||||
{
|
||||
if( !fs.isOpened() )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "runParams can not be read " );
|
||||
return cvtest::TS::FAIL_INVALID_TEST_DATA;
|
||||
}
|
||||
caseNames.clear();;
|
||||
caseDatasets.clear();
|
||||
return cvtest::TS::OK;
|
||||
}
|
||||
|
||||
void CV_StereoMatchingTest::writeErrors( const string& errName, const vector<float>& errors, FileStorage* fs )
|
||||
{
|
||||
assert( (int)errors.size() == ERROR_KINDS_COUNT );
|
||||
vector<float>::const_iterator it = errors.begin();
|
||||
if( fs )
|
||||
for( int i = 0; i < ERROR_KINDS_COUNT; i++, ++it )
|
||||
*fs << ERROR_PREFIXES[i] + errName << *it;
|
||||
else
|
||||
for( int i = 0; i < ERROR_KINDS_COUNT; i++, ++it )
|
||||
ts->printf( cvtest::TS::LOG, "%s = %f\n", string(ERROR_PREFIXES[i]+errName).c_str(), *it );
|
||||
}
|
||||
|
||||
void CV_StereoMatchingTest::writeROI( const Rect& calcROI, FileStorage* fs )
|
||||
{
|
||||
if( fs )
|
||||
{
|
||||
*fs << ROI_PREFIXES[0] << calcROI.x;
|
||||
*fs << ROI_PREFIXES[1] << calcROI.y;
|
||||
*fs << ROI_PREFIXES[2] << calcROI.width;
|
||||
*fs << ROI_PREFIXES[3] << calcROI.height;
|
||||
}
|
||||
else
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "%s = %d\n", ROI_PREFIXES[0].c_str(), calcROI.x );
|
||||
ts->printf( cvtest::TS::LOG, "%s = %d\n", ROI_PREFIXES[1].c_str(), calcROI.y );
|
||||
ts->printf( cvtest::TS::LOG, "%s = %d\n", ROI_PREFIXES[2].c_str(), calcROI.width );
|
||||
ts->printf( cvtest::TS::LOG, "%s = %d\n", ROI_PREFIXES[3].c_str(), calcROI.height );
|
||||
}
|
||||
}
|
||||
|
||||
void CV_StereoMatchingTest::readErrors( FileNode& fn, const string& errName, vector<float>& errors )
|
||||
{
|
||||
errors.resize( ERROR_KINDS_COUNT );
|
||||
vector<float>::iterator it = errors.begin();
|
||||
for( int i = 0; i < ERROR_KINDS_COUNT; i++, ++it )
|
||||
fn[ERROR_PREFIXES[i]+errName] >> *it;
|
||||
}
|
||||
|
||||
void CV_StereoMatchingTest::readROI( FileNode& fn, Rect& validROI )
|
||||
{
|
||||
fn[ROI_PREFIXES[0]] >> validROI.x;
|
||||
fn[ROI_PREFIXES[1]] >> validROI.y;
|
||||
fn[ROI_PREFIXES[2]] >> validROI.width;
|
||||
fn[ROI_PREFIXES[3]] >> validROI.height;
|
||||
}
|
||||
|
||||
int CV_StereoMatchingTest::compareErrors( const vector<float>& calcErrors, const vector<float>& validErrors,
|
||||
const vector<float>& eps, const string& errName )
|
||||
{
|
||||
assert( (int)calcErrors.size() == ERROR_KINDS_COUNT );
|
||||
assert( (int)validErrors.size() == ERROR_KINDS_COUNT );
|
||||
assert( (int)eps.size() == ERROR_KINDS_COUNT );
|
||||
vector<float>::const_iterator calcIt = calcErrors.begin(),
|
||||
validIt = validErrors.begin(),
|
||||
epsIt = eps.begin();
|
||||
bool ok = true;
|
||||
for( int i = 0; i < ERROR_KINDS_COUNT; i++, ++calcIt, ++validIt, ++epsIt )
|
||||
if( *calcIt - *validIt > *epsIt )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of %s (valid=%f; calc=%f)\n", string(ERROR_PREFIXES[i]+errName).c_str(), *validIt, *calcIt );
|
||||
ok = false;
|
||||
}
|
||||
return ok ? cvtest::TS::OK : cvtest::TS::FAIL_BAD_ACCURACY;
|
||||
}
|
||||
|
||||
int CV_StereoMatchingTest::compareROI( const Rect& calcROI, const Rect& validROI )
|
||||
{
|
||||
int compare[4][2] = {
|
||||
{ calcROI.x, validROI.x },
|
||||
{ calcROI.y, validROI.y },
|
||||
{ calcROI.width, validROI.width },
|
||||
{ calcROI.height, validROI.height },
|
||||
};
|
||||
bool ok = true;
|
||||
for (int i = 0; i < 4; i++)
|
||||
{
|
||||
if (compare[i][0] != compare[i][1])
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of %s (valid=%d; calc=%d)\n", ROI_PREFIXES[i].c_str(), compare[i][1], compare[i][0] );
|
||||
ok = false;
|
||||
}
|
||||
}
|
||||
return ok ? cvtest::TS::OK : cvtest::TS::FAIL_BAD_ACCURACY;
|
||||
}
|
||||
|
||||
//----------------------------------- StereoBM test -----------------------------------------------------
|
||||
|
||||
class CV_StereoBMTest : public CV_StereoMatchingTest
|
||||
{
|
||||
public:
|
||||
CV_StereoBMTest()
|
||||
{
|
||||
name = "stereobm";
|
||||
fill(rmsEps.begin(), rmsEps.end(), 0.4f);
|
||||
fill(fracEps.begin(), fracEps.end(), 0.022f);
|
||||
}
|
||||
|
||||
protected:
|
||||
struct RunParams
|
||||
{
|
||||
int ndisp;
|
||||
int mindisp;
|
||||
int winSize;
|
||||
};
|
||||
vector<RunParams> caseRunParams;
|
||||
|
||||
virtual int readRunParams( FileStorage& fs )
|
||||
{
|
||||
int code = CV_StereoMatchingTest::readRunParams( fs );
|
||||
FileNode fn = fs.getFirstTopLevelNode();
|
||||
assert(fn.isSeq());
|
||||
for( int i = 0; i < (int)fn.size(); i+=5 )
|
||||
{
|
||||
String caseName = fn[i], datasetName = fn[i+1];
|
||||
RunParams params;
|
||||
String ndisp = fn[i+2]; params.ndisp = atoi(ndisp.c_str());
|
||||
String mindisp = fn[i+3]; params.mindisp = atoi(mindisp.c_str());
|
||||
String winSize = fn[i+4]; params.winSize = atoi(winSize.c_str());
|
||||
caseNames.push_back( caseName );
|
||||
caseDatasets.push_back( datasetName );
|
||||
caseRunParams.push_back( params );
|
||||
}
|
||||
return code;
|
||||
}
|
||||
|
||||
virtual int runStereoMatchingAlgorithm( const Mat& _leftImg, const Mat& _rightImg,
|
||||
Rect& calcROI, Mat& leftDisp, Mat& /*rightDisp*/, int caseIdx )
|
||||
{
|
||||
RunParams params = caseRunParams[caseIdx];
|
||||
assert( params.ndisp%16 == 0 );
|
||||
assert( _leftImg.type() == CV_8UC3 && _rightImg.type() == CV_8UC3 );
|
||||
Mat leftImg; cvtColor( _leftImg, leftImg, COLOR_BGR2GRAY );
|
||||
Mat rightImg; cvtColor( _rightImg, rightImg, COLOR_BGR2GRAY );
|
||||
|
||||
Ptr<StereoBM> bm = StereoBM::create( params.ndisp, params.winSize );
|
||||
Mat tempDisp;
|
||||
bm->setMinDisparity(params.mindisp);
|
||||
|
||||
Rect cROI(0, 0, _leftImg.cols, _leftImg.rows);
|
||||
calcROI = getValidDisparityROI(cROI, cROI, params.mindisp, params.ndisp, params.winSize);
|
||||
|
||||
bm->compute( leftImg, rightImg, tempDisp );
|
||||
tempDisp.convertTo(leftDisp, CV_32F, 1./StereoMatcher::DISP_SCALE);
|
||||
|
||||
//check for fixed-type disparity data type
|
||||
Mat_<float> fixedFloatDisp;
|
||||
bm->compute( leftImg, rightImg, fixedFloatDisp );
|
||||
EXPECT_LT(cvtest::norm(fixedFloatDisp, leftDisp, cv::NORM_L2 | cv::NORM_RELATIVE),
|
||||
0.005 + DBL_EPSILON);
|
||||
|
||||
if (params.mindisp != 0)
|
||||
for (int y = 0; y < leftDisp.rows; y++)
|
||||
for (int x = 0; x < leftDisp.cols; x++)
|
||||
{
|
||||
if (leftDisp.at<float>(y, x) < params.mindisp)
|
||||
leftDisp.at<float>(y, x) = -1./StereoMatcher::DISP_SCALE; // treat disparity < mindisp as no disparity
|
||||
}
|
||||
|
||||
return params.winSize/2;
|
||||
}
|
||||
};
|
||||
|
||||
TEST(Calib3d_StereoBM, regression) { CV_StereoBMTest test; test.safe_run(); }
|
||||
|
||||
/* < preFilter, < preFilterCap, SADWindowSize > >*/
|
||||
typedef tuple < int, tuple < int, int > > BufferBM_Params_t;
|
||||
|
||||
typedef testing::TestWithParam< BufferBM_Params_t > Calib3d_StereoBM_BufferBM;
|
||||
|
||||
const int preFilters[] =
|
||||
{
|
||||
StereoBM::PREFILTER_NORMALIZED_RESPONSE,
|
||||
StereoBM::PREFILTER_XSOBEL
|
||||
};
|
||||
|
||||
const tuple < int, int > useShortsConditions[] =
|
||||
{
|
||||
make_tuple(30, 19),
|
||||
make_tuple(32, 23)
|
||||
};
|
||||
|
||||
TEST_P(Calib3d_StereoBM_BufferBM, memAllocsTest)
|
||||
{
|
||||
const int preFilter = get<0>(GetParam());
|
||||
const int preFilterCap = get<0>(get<1>(GetParam()));
|
||||
const int SADWindowSize = get<1>(get<1>(GetParam()));
|
||||
|
||||
String path = cvtest::TS::ptr()->get_data_path() + "cv/stereomatching/datasets/teddy/";
|
||||
Mat leftImg = imread(path + "im2.png", 0);
|
||||
ASSERT_FALSE(leftImg.empty());
|
||||
Mat rightImg = imread(path + "im6.png", 0);
|
||||
ASSERT_FALSE(rightImg.empty());
|
||||
Mat leftDisp;
|
||||
{
|
||||
Ptr<StereoBM> bm = StereoBM::create(16,9);
|
||||
bm->setPreFilterType(preFilter);
|
||||
bm->setPreFilterCap(preFilterCap);
|
||||
bm->setBlockSize(SADWindowSize);
|
||||
bm->compute( leftImg, rightImg, leftDisp);
|
||||
|
||||
ASSERT_FALSE(leftDisp.empty());
|
||||
}
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(/*nothing*/, Calib3d_StereoBM_BufferBM,
|
||||
testing::Combine(
|
||||
testing::ValuesIn(preFilters),
|
||||
testing::ValuesIn(useShortsConditions)
|
||||
)
|
||||
);
|
||||
|
||||
//----------------------------------- StereoSGBM test -----------------------------------------------------
|
||||
|
||||
class CV_StereoSGBMTest : public CV_StereoMatchingTest
|
||||
{
|
||||
public:
|
||||
CV_StereoSGBMTest()
|
||||
{
|
||||
name = "stereosgbm";
|
||||
fill(rmsEps.begin(), rmsEps.end(), 0.25f);
|
||||
fill(fracEps.begin(), fracEps.end(), 0.01f);
|
||||
}
|
||||
|
||||
protected:
|
||||
struct RunParams
|
||||
{
|
||||
int ndisp;
|
||||
int winSize;
|
||||
int mode;
|
||||
};
|
||||
vector<RunParams> caseRunParams;
|
||||
|
||||
virtual int readRunParams( FileStorage& fs )
|
||||
{
|
||||
int code = CV_StereoMatchingTest::readRunParams(fs);
|
||||
FileNode fn = fs.getFirstTopLevelNode();
|
||||
assert(fn.isSeq());
|
||||
for( int i = 0; i < (int)fn.size(); i+=5 )
|
||||
{
|
||||
String caseName = fn[i], datasetName = fn[i+1];
|
||||
RunParams params;
|
||||
String ndisp = fn[i+2]; params.ndisp = atoi(ndisp.c_str());
|
||||
String winSize = fn[i+3]; params.winSize = atoi(winSize.c_str());
|
||||
String mode = fn[i+4]; params.mode = atoi(mode.c_str());
|
||||
caseNames.push_back( caseName );
|
||||
caseDatasets.push_back( datasetName );
|
||||
caseRunParams.push_back( params );
|
||||
}
|
||||
return code;
|
||||
}
|
||||
|
||||
virtual int runStereoMatchingAlgorithm( const Mat& leftImg, const Mat& rightImg,
|
||||
Rect& calcROI, Mat& leftDisp, Mat& /*rightDisp*/, int caseIdx )
|
||||
{
|
||||
RunParams params = caseRunParams[caseIdx];
|
||||
assert( params.ndisp%16 == 0 );
|
||||
Ptr<StereoSGBM> sgbm = StereoSGBM::create( 0, params.ndisp, params.winSize,
|
||||
10*params.winSize*params.winSize,
|
||||
40*params.winSize*params.winSize,
|
||||
1, 63, 10, 100, 32, params.mode );
|
||||
|
||||
Rect cROI(0, 0, leftImg.cols, leftImg.rows);
|
||||
calcROI = getValidDisparityROI(cROI, cROI, 0, params.ndisp, params.winSize);
|
||||
|
||||
sgbm->compute( leftImg, rightImg, leftDisp );
|
||||
CV_Assert( leftDisp.type() == CV_16SC1 );
|
||||
leftDisp/=16;
|
||||
return 0;
|
||||
}
|
||||
};
|
||||
|
||||
TEST(Calib3d_StereoSGBM, regression) { CV_StereoSGBMTest test; test.safe_run(); }
|
||||
|
||||
TEST(Calib3d_StereoSGBM_HH4, regression)
|
||||
{
|
||||
String path = cvtest::TS::ptr()->get_data_path() + "cv/stereomatching/datasets/teddy/";
|
||||
Mat leftImg = imread(path + "im2.png", 0);
|
||||
ASSERT_FALSE(leftImg.empty());
|
||||
Mat rightImg = imread(path + "im6.png", 0);
|
||||
ASSERT_FALSE(rightImg.empty());
|
||||
Mat testData = imread(path + "disp2_hh4.png",-1);
|
||||
ASSERT_FALSE(testData.empty());
|
||||
Mat leftDisp;
|
||||
Mat toCheck;
|
||||
{
|
||||
Ptr<StereoSGBM> sgbm = StereoSGBM::create( 0, 48, 3, 90, 360, 1, 63, 10, 100, 32, StereoSGBM::MODE_HH4);
|
||||
sgbm->compute( leftImg, rightImg, leftDisp);
|
||||
CV_Assert( leftDisp.type() == CV_16SC1 );
|
||||
leftDisp.convertTo(toCheck, CV_16UC1,1,16);
|
||||
}
|
||||
Mat diff;
|
||||
absdiff(toCheck, testData,diff);
|
||||
CV_Assert( countNonZero(diff)==0);
|
||||
}
|
||||
|
||||
}} // namespace
|
||||
Reference in New Issue
Block a user