init - 初始化项目
This commit is contained in:
42
doc/tutorials/gapi/table_of_content_gapi.markdown
Normal file
42
doc/tutorials/gapi/table_of_content_gapi.markdown
Normal file
@@ -0,0 +1,42 @@
|
||||
# Graph API (gapi module) {#tutorial_table_of_content_gapi}
|
||||
|
||||
In this section you will learn about graph-based image processing and
|
||||
how G-API module can be used for that.
|
||||
|
||||
- @subpage tutorial_gapi_interactive_face_detection
|
||||
|
||||
*Languages:* C++
|
||||
|
||||
*Compatibility:* \> OpenCV 4.2
|
||||
|
||||
*Author:* Dmitry Matveev
|
||||
|
||||
This tutorial illustrates how to build a hybrid video processing
|
||||
pipeline with G-API where Deep Learning and image processing are
|
||||
combined effectively to maximize the overall throughput. This
|
||||
sample requires Intel® distribution of OpenVINO™ Toolkit version
|
||||
2019R2 or later.
|
||||
|
||||
- @subpage tutorial_gapi_anisotropic_segmentation
|
||||
|
||||
*Languages:* C++
|
||||
|
||||
*Compatibility:* \> OpenCV 4.0
|
||||
|
||||
*Author:* Dmitry Matveev
|
||||
|
||||
This is an end-to-end tutorial where an existing sample algorithm
|
||||
is ported on G-API, covering the basic intuition behind this
|
||||
transition process, and examining benefits which a graph model
|
||||
brings there.
|
||||
|
||||
- @subpage tutorial_gapi_face_beautification
|
||||
|
||||
*Languages:* C++
|
||||
|
||||
*Compatibility:* \> OpenCV 4.2
|
||||
|
||||
*Author:* Orest Chura
|
||||
|
||||
In this tutorial we build a complex hybrid Computer Vision/Deep
|
||||
Learning video processing pipeline with G-API.
|
||||
Reference in New Issue
Block a user