init - 初始化项目
This commit is contained in:
150
doc/tutorials/features2d/akaze_tracking/akaze_tracking.markdown
Normal file
150
doc/tutorials/features2d/akaze_tracking/akaze_tracking.markdown
Normal file
@@ -0,0 +1,150 @@
|
||||
AKAZE and ORB planar tracking {#tutorial_akaze_tracking}
|
||||
=============================
|
||||
|
||||
@tableofcontents
|
||||
|
||||
@prev_tutorial{tutorial_akaze_matching}
|
||||
@next_tutorial{tutorial_homography}
|
||||
|
||||
| | |
|
||||
| -: | :- |
|
||||
| Original author | Fedor Morozov |
|
||||
| Compatibility | OpenCV >= 3.0 |
|
||||
|
||||
Introduction
|
||||
------------
|
||||
|
||||
In this tutorial we will compare *AKAZE* and *ORB* local features using them to find matches between
|
||||
video frames and track object movements.
|
||||
|
||||
The algorithm is as follows:
|
||||
|
||||
- Detect and describe keypoints on the first frame, manually set object boundaries
|
||||
- For every next frame:
|
||||
-# Detect and describe keypoints
|
||||
-# Match them using bruteforce matcher
|
||||
-# Estimate homography transformation using RANSAC
|
||||
-# Filter inliers from all the matches
|
||||
-# Apply homography transformation to the bounding box to find the object
|
||||
-# Draw bounding box and inliers, compute inlier ratio as evaluation metric
|
||||
|
||||

|
||||
|
||||
Data
|
||||
----
|
||||
|
||||
To do the tracking we need a video and object position on the first frame.
|
||||
|
||||
You can download our example video and data from
|
||||
[here](https://docs.google.com/file/d/0B72G7D4snftJandBb0taLVJHMFk).
|
||||
|
||||
To run the code you have to specify input (camera id or video_file). Then, select a bounding box with the mouse, and press any key to start tracking
|
||||
@code{.none}
|
||||
./planar_tracking blais.mp4
|
||||
@endcode
|
||||
|
||||
Source Code
|
||||
-----------
|
||||
|
||||
@include cpp/tutorial_code/features2D/AKAZE_tracking/planar_tracking.cpp
|
||||
|
||||
Explanation
|
||||
-----------
|
||||
|
||||
### Tracker class
|
||||
|
||||
This class implements algorithm described abobve using given feature detector and descriptor
|
||||
matcher.
|
||||
|
||||
- **Setting up the first frame**
|
||||
@code{.cpp}
|
||||
void Tracker::setFirstFrame(const Mat frame, vector<Point2f> bb, string title, Stats& stats)
|
||||
{
|
||||
first_frame = frame.clone();
|
||||
(*detector)(first_frame, noArray(), first_kp, first_desc);
|
||||
stats.keypoints = (int)first_kp.size();
|
||||
drawBoundingBox(first_frame, bb);
|
||||
putText(first_frame, title, Point(0, 60), FONT_HERSHEY_PLAIN, 5, Scalar::all(0), 4);
|
||||
object_bb = bb;
|
||||
}
|
||||
@endcode
|
||||
We compute and store keypoints and descriptors from the first frame and prepare it for the
|
||||
output.
|
||||
|
||||
We need to save number of detected keypoints to make sure both detectors locate roughly the same
|
||||
number of those.
|
||||
|
||||
- **Processing frames**
|
||||
|
||||
-# Locate keypoints and compute descriptors
|
||||
@code{.cpp}
|
||||
(*detector)(frame, noArray(), kp, desc);
|
||||
@endcode
|
||||
|
||||
To find matches between frames we have to locate the keypoints first.
|
||||
|
||||
In this tutorial detectors are set up to find about 1000 keypoints on each frame.
|
||||
|
||||
-# Use 2-nn matcher to find correspondences
|
||||
@code{.cpp}
|
||||
matcher->knnMatch(first_desc, desc, matches, 2);
|
||||
for(unsigned i = 0; i < matches.size(); i++) {
|
||||
if(matches[i][0].distance < nn_match_ratio * matches[i][1].distance) {
|
||||
matched1.push_back(first_kp[matches[i][0].queryIdx]);
|
||||
matched2.push_back( kp[matches[i][0].trainIdx]);
|
||||
}
|
||||
}
|
||||
@endcode
|
||||
If the closest match is *nn_match_ratio* closer than the second closest one, then it's a
|
||||
match.
|
||||
|
||||
-# Use *RANSAC* to estimate homography transformation
|
||||
@code{.cpp}
|
||||
homography = findHomography(Points(matched1), Points(matched2),
|
||||
RANSAC, ransac_thresh, inlier_mask);
|
||||
@endcode
|
||||
If there are at least 4 matches we can use random sample consensus to estimate image
|
||||
transformation.
|
||||
|
||||
-# Save the inliers
|
||||
@code{.cpp}
|
||||
for(unsigned i = 0; i < matched1.size(); i++) {
|
||||
if(inlier_mask.at<uchar>(i)) {
|
||||
int new_i = static_cast<int>(inliers1.size());
|
||||
inliers1.push_back(matched1[i]);
|
||||
inliers2.push_back(matched2[i]);
|
||||
inlier_matches.push_back(DMatch(new_i, new_i, 0));
|
||||
}
|
||||
}
|
||||
@endcode
|
||||
Since *findHomography* computes the inliers we only have to save the chosen points and
|
||||
matches.
|
||||
|
||||
-# Project object bounding box
|
||||
@code{.cpp}
|
||||
perspectiveTransform(object_bb, new_bb, homography);
|
||||
@endcode
|
||||
|
||||
If there is a reasonable number of inliers we can use estimated transformation to locate the
|
||||
object.
|
||||
|
||||
Results
|
||||
-------
|
||||
|
||||
You can watch the resulting [video on youtube](http://www.youtube.com/watch?v=LWY-w8AGGhE).
|
||||
|
||||
*AKAZE* statistics:
|
||||
@code{.none}
|
||||
Matches 626
|
||||
Inliers 410
|
||||
Inlier ratio 0.58
|
||||
Keypoints 1117
|
||||
@endcode
|
||||
|
||||
*ORB* statistics:
|
||||
@code{.none}
|
||||
Matches 504
|
||||
Inliers 319
|
||||
Inlier ratio 0.56
|
||||
Keypoints 1112
|
||||
@endcode
|
||||
BIN
doc/tutorials/features2d/akaze_tracking/images/frame.png
Normal file
BIN
doc/tutorials/features2d/akaze_tracking/images/frame.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 318 KiB |
Reference in New Issue
Block a user