init - 初始化项目
This commit is contained in:
74
doc/tutorials/dnn/dnn_googlenet/dnn_googlenet.markdown
Normal file
74
doc/tutorials/dnn/dnn_googlenet/dnn_googlenet.markdown
Normal file
@@ -0,0 +1,74 @@
|
||||
Load Caffe framework models {#tutorial_dnn_googlenet}
|
||||
===========================
|
||||
|
||||
@tableofcontents
|
||||
|
||||
@next_tutorial{tutorial_dnn_halide}
|
||||
|
||||
| | |
|
||||
| -: | :- |
|
||||
| Original author | Vitaliy Lyudvichenko |
|
||||
| Compatibility | OpenCV >= 3.3 |
|
||||
|
||||
Introduction
|
||||
------------
|
||||
|
||||
In this tutorial you will learn how to use opencv_dnn module for image classification by using
|
||||
GoogLeNet trained network from [Caffe model zoo](http://caffe.berkeleyvision.org/model_zoo.html).
|
||||
|
||||
We will demonstrate results of this example on the following picture.
|
||||

|
||||
|
||||
Source Code
|
||||
-----------
|
||||
|
||||
We will be using snippets from the example application, that can be downloaded [here](https://github.com/opencv/opencv/blob/master/samples/dnn/classification.cpp).
|
||||
|
||||
@include dnn/classification.cpp
|
||||
|
||||
Explanation
|
||||
-----------
|
||||
|
||||
-# Firstly, download GoogLeNet model files:
|
||||
[bvlc_googlenet.prototxt ](https://github.com/opencv/opencv_extra/blob/master/testdata/dnn/bvlc_googlenet.prototxt) and
|
||||
[bvlc_googlenet.caffemodel](http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel)
|
||||
|
||||
Also you need file with names of [ILSVRC2012](http://image-net.org/challenges/LSVRC/2012/browse-synsets) classes:
|
||||
[classification_classes_ILSVRC2012.txt](https://github.com/opencv/opencv/blob/master/samples/data/dnn/classification_classes_ILSVRC2012.txt).
|
||||
|
||||
Put these files into working dir of this program example.
|
||||
|
||||
-# Read and initialize network using path to .prototxt and .caffemodel files
|
||||
@snippet dnn/classification.cpp Read and initialize network
|
||||
|
||||
You can skip an argument `framework` if one of the files `model` or `config` has an
|
||||
extension `.caffemodel` or `.prototxt`.
|
||||
This way function cv::dnn::readNet can automatically detects a model's format.
|
||||
|
||||
-# Read input image and convert to the blob, acceptable by GoogleNet
|
||||
@snippet dnn/classification.cpp Open a video file or an image file or a camera stream
|
||||
|
||||
cv::VideoCapture can load both images and videos.
|
||||
|
||||
@snippet dnn/classification.cpp Create a 4D blob from a frame
|
||||
We convert the image to a 4-dimensional blob (so-called batch) with `1x3x224x224` shape
|
||||
after applying necessary pre-processing like resizing and mean subtraction
|
||||
`(-104, -117, -123)` for each blue, green and red channels correspondingly using cv::dnn::blobFromImage function.
|
||||
|
||||
-# Pass the blob to the network
|
||||
@snippet dnn/classification.cpp Set input blob
|
||||
|
||||
-# Make forward pass
|
||||
@snippet dnn/classification.cpp Make forward pass
|
||||
During the forward pass output of each network layer is computed, but in this example we need output from the last layer only.
|
||||
|
||||
-# Determine the best class
|
||||
@snippet dnn/classification.cpp Get a class with a highest score
|
||||
We put the output of network, which contain probabilities for each of 1000 ILSVRC2012 image classes, to the `prob` blob.
|
||||
And find the index of element with maximal value in this one. This index corresponds to the class of the image.
|
||||
|
||||
-# Run an example from command line
|
||||
@code
|
||||
./example_dnn_classification --model=bvlc_googlenet.caffemodel --config=bvlc_googlenet.prototxt --width=224 --height=224 --classes=classification_classes_ILSVRC2012.txt --input=space_shuttle.jpg --mean="104 117 123"
|
||||
@endcode
|
||||
For our image we get prediction of class `space shuttle` with more than 99% sureness.
|
||||
Reference in New Issue
Block a user