init - 初始化项目

This commit is contained in:
Lee Nony
2022-05-06 01:58:53 +08:00
commit 90a5cc7cb6
6772 changed files with 2837787 additions and 0 deletions

View File

@@ -0,0 +1,123 @@
Adding (blending) two images using OpenCV {#tutorial_adding_images}
=========================================
@tableofcontents
@prev_tutorial{tutorial_mat_operations}
@next_tutorial{tutorial_basic_linear_transform}
| | |
| -: | :- |
| Original author | Ana Huamán |
| Compatibility | OpenCV >= 3.0 |
We will learn how to blend two images!
Goal
----
In this tutorial you will learn:
- what is *linear blending* and why it is useful;
- how to add two images using **addWeighted()**
Theory
------
@note
The explanation below belongs to the book [Computer Vision: Algorithms and
Applications](http://szeliski.org/Book/) by Richard Szeliski
From our previous tutorial, we know already a bit of *Pixel operators*. An interesting dyadic
(two-input) operator is the *linear blend operator*:
\f[g(x) = (1 - \alpha)f_{0}(x) + \alpha f_{1}(x)\f]
By varying \f$\alpha\f$ from \f$0 \rightarrow 1\f$ this operator can be used to perform a temporal
*cross-dissolve* between two images or videos, as seen in slide shows and film productions (cool,
eh?)
Source Code
-----------
@add_toggle_cpp
Download the source code from
[here](https://raw.githubusercontent.com/opencv/opencv/master/samples/cpp/tutorial_code/core/AddingImages/AddingImages.cpp).
@include cpp/tutorial_code/core/AddingImages/AddingImages.cpp
@end_toggle
@add_toggle_java
Download the source code from
[here](https://raw.githubusercontent.com/opencv/opencv/master/samples/java/tutorial_code/core/AddingImages/AddingImages.java).
@include java/tutorial_code/core/AddingImages/AddingImages.java
@end_toggle
@add_toggle_python
Download the source code from
[here](https://raw.githubusercontent.com/opencv/opencv/master/samples/python/tutorial_code/core/AddingImages/adding_images.py).
@include python/tutorial_code/core/AddingImages/adding_images.py
@end_toggle
Explanation
-----------
Since we are going to perform:
\f[g(x) = (1 - \alpha)f_{0}(x) + \alpha f_{1}(x)\f]
We need two source images (\f$f_{0}(x)\f$ and \f$f_{1}(x)\f$). So, we load them in the usual way:
@add_toggle_cpp
@snippet cpp/tutorial_code/core/AddingImages/AddingImages.cpp load
@end_toggle
@add_toggle_java
@snippet java/tutorial_code/core/AddingImages/AddingImages.java load
@end_toggle
@add_toggle_python
@snippet python/tutorial_code/core/AddingImages/adding_images.py load
@end_toggle
We used the following images: [LinuxLogo.jpg](https://raw.githubusercontent.com/opencv/opencv/master/samples/data/LinuxLogo.jpg) and [WindowsLogo.jpg](https://raw.githubusercontent.com/opencv/opencv/master/samples/data/WindowsLogo.jpg)
@warning Since we are *adding* *src1* and *src2*, they both have to be of the same size
(width and height) and type.
Now we need to generate the `g(x)` image. For this, the function **addWeighted()** comes quite handy:
@add_toggle_cpp
@snippet cpp/tutorial_code/core/AddingImages/AddingImages.cpp blend_images
@end_toggle
@add_toggle_java
@snippet java/tutorial_code/core/AddingImages/AddingImages.java blend_images
@end_toggle
@add_toggle_python
@snippet python/tutorial_code/core/AddingImages/adding_images.py blend_images
Numpy version of above line (but cv function is around 2x faster):
\code{.py}
dst = np.uint8(alpha*(img1)+beta*(img2))
\endcode
@end_toggle
since **addWeighted()** produces:
\f[dst = \alpha \cdot src1 + \beta \cdot src2 + \gamma\f]
In this case, `gamma` is the argument \f$0.0\f$ in the code above.
Create windows, show the images and wait for the user to end the program.
@add_toggle_cpp
@snippet cpp/tutorial_code/core/AddingImages/AddingImages.cpp display
@end_toggle
@add_toggle_java
@snippet java/tutorial_code/core/AddingImages/AddingImages.java display
@end_toggle
@add_toggle_python
@snippet python/tutorial_code/core/AddingImages/adding_images.py display
@end_toggle
Result
------
![](images/Adding_Images_Tutorial_Result_Big.jpg)

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.4 KiB