init - 初始化项目
This commit is contained in:
387
doc/js_tutorials/js_assets/js_object_detection.html
Normal file
387
doc/js_tutorials/js_assets/js_object_detection.html
Normal file
@@ -0,0 +1,387 @@
|
||||
<!DOCTYPE html>
|
||||
<html>
|
||||
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
<title>Object Detection Example</title>
|
||||
<link href="js_example_style.css" rel="stylesheet" type="text/css" />
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<h2>Object Detection Example</h2>
|
||||
<p>
|
||||
This tutorial shows you how to write an object detection example with OpenCV.js.<br>
|
||||
To try the example you should click the <b>modelFile</b> button(and <b>configFile</b> button if needed) to upload inference model.
|
||||
You can find the model URLs and parameters in the <a href="#appendix">model info</a> section.
|
||||
Then You should change the parameters in the first code snippet according to the uploaded model.
|
||||
Finally click <b>Try it</b> button to see the result. You can choose any other images.<br>
|
||||
</p>
|
||||
|
||||
<div class="control"><button id="tryIt" disabled>Try it</button></div>
|
||||
<div>
|
||||
<table cellpadding="0" cellspacing="0" width="0" border="0">
|
||||
<tr>
|
||||
<td>
|
||||
<canvas id="canvasInput" width="400" height="400"></canvas>
|
||||
</td>
|
||||
<td>
|
||||
<canvas id="canvasOutput" style="visibility: hidden;" width="400" height="400"></canvas>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>
|
||||
<div class="caption">
|
||||
canvasInput <input type="file" id="fileInput" name="file" accept="image/*">
|
||||
</div>
|
||||
</td>
|
||||
<td>
|
||||
<p id='status' align="left"></p>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>
|
||||
<div class="caption">
|
||||
modelFile <input type="file" id="modelFile" name="file">
|
||||
</div>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>
|
||||
<div class="caption">
|
||||
configFile <input type="file" id="configFile">
|
||||
</div>
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
</div>
|
||||
|
||||
<div>
|
||||
<p class="err" id="errorMessage"></p>
|
||||
</div>
|
||||
|
||||
<div>
|
||||
<h3>Help function</h3>
|
||||
<p>1.The parameters for model inference which you can modify to investigate more models.</p>
|
||||
<textarea class="code" rows="15" cols="100" id="codeEditor" spellcheck="false"></textarea>
|
||||
<p>2.Main loop in which will read the image from canvas and do inference once.</p>
|
||||
<textarea class="code" rows="16" cols="100" id="codeEditor1" spellcheck="false"></textarea>
|
||||
<p>3.Load labels from txt file and process it into an array.</p>
|
||||
<textarea class="code" rows="7" cols="100" id="codeEditor2" spellcheck="false"></textarea>
|
||||
<p>4.Get blob from image as input for net, and standardize it with <b>mean</b> and <b>std</b>.</p>
|
||||
<textarea class="code" rows="17" cols="100" id="codeEditor3" spellcheck="false"></textarea>
|
||||
<p>5.Fetch model file and save to emscripten file system once click the input button.</p>
|
||||
<textarea class="code" rows="17" cols="100" id="codeEditor4" spellcheck="false"></textarea>
|
||||
<p>6.The post-processing, including get boxes from output and draw boxes into the image.</p>
|
||||
<textarea class="code" rows="35" cols="100" id="codeEditor5" spellcheck="false"></textarea>
|
||||
</div>
|
||||
|
||||
<div id="appendix">
|
||||
<h2>Model Info:</h2>
|
||||
</div>
|
||||
|
||||
<script src="utils.js" type="text/javascript"></script>
|
||||
<script src="js_dnn_example_helper.js" type="text/javascript"></script>
|
||||
|
||||
<script id="codeSnippet" type="text/code-snippet">
|
||||
inputSize = [300, 300];
|
||||
mean = [127.5, 127.5, 127.5];
|
||||
std = 0.007843;
|
||||
swapRB = false;
|
||||
confThreshold = 0.5;
|
||||
nmsThreshold = 0.4;
|
||||
|
||||
// The type of output, can be YOLO or SSD
|
||||
outType = "SSD";
|
||||
|
||||
// url for label file, can from local or Internet
|
||||
labelsUrl = "https://raw.githubusercontent.com/opencv/opencv/master/samples/data/dnn/object_detection_classes_pascal_voc.txt";
|
||||
</script>
|
||||
|
||||
<script id="codeSnippet1" type="text/code-snippet">
|
||||
main = async function() {
|
||||
const labels = await loadLables(labelsUrl);
|
||||
const input = getBlobFromImage(inputSize, mean, std, swapRB, 'canvasInput');
|
||||
let net = cv.readNet(configPath, modelPath);
|
||||
net.setInput(input);
|
||||
const start = performance.now();
|
||||
const result = net.forward();
|
||||
const time = performance.now()-start;
|
||||
const output = postProcess(result, labels);
|
||||
|
||||
updateResult(output, time);
|
||||
input.delete();
|
||||
net.delete();
|
||||
result.delete();
|
||||
}
|
||||
</script>
|
||||
|
||||
<script id="codeSnippet5" type="text/code-snippet">
|
||||
postProcess = function(result, labels) {
|
||||
let canvasOutput = document.getElementById('canvasOutput');
|
||||
const outputWidth = canvasOutput.width;
|
||||
const outputHeight = canvasOutput.height;
|
||||
const resultData = result.data32F;
|
||||
|
||||
// Get the boxes(with class and confidence) from the output
|
||||
let boxes = [];
|
||||
switch(outType) {
|
||||
case "YOLO": {
|
||||
const vecNum = result.matSize[0];
|
||||
const vecLength = result.matSize[1];
|
||||
const classNum = vecLength - 5;
|
||||
|
||||
for (let i = 0; i < vecNum; ++i) {
|
||||
let vector = resultData.slice(i*vecLength, (i+1)*vecLength);
|
||||
let scores = vector.slice(5, vecLength);
|
||||
let classId = scores.indexOf(Math.max(...scores));
|
||||
let confidence = scores[classId];
|
||||
if (confidence > confThreshold) {
|
||||
let center_x = Math.round(vector[0] * outputWidth);
|
||||
let center_y = Math.round(vector[1] * outputHeight);
|
||||
let width = Math.round(vector[2] * outputWidth);
|
||||
let height = Math.round(vector[3] * outputHeight);
|
||||
let left = Math.round(center_x - width / 2);
|
||||
let top = Math.round(center_y - height / 2);
|
||||
|
||||
let box = {
|
||||
scores: scores,
|
||||
classId: classId,
|
||||
confidence: confidence,
|
||||
bounding: [left, top, width, height],
|
||||
toDraw: true
|
||||
}
|
||||
boxes.push(box);
|
||||
}
|
||||
}
|
||||
|
||||
// NMS(Non Maximum Suppression) algorithm
|
||||
let boxNum = boxes.length;
|
||||
let tmp_boxes = [];
|
||||
let sorted_boxes = [];
|
||||
for (let c = 0; c < classNum; ++c) {
|
||||
for (let i = 0; i < boxes.length; ++i) {
|
||||
tmp_boxes[i] = [boxes[i], i];
|
||||
}
|
||||
sorted_boxes = tmp_boxes.sort((a, b) => { return (b[0].scores[c] - a[0].scores[c]); });
|
||||
for (let i = 0; i < boxNum; ++i) {
|
||||
if (sorted_boxes[i][0].scores[c] === 0) continue;
|
||||
else {
|
||||
for (let j = i + 1; j < boxNum; ++j) {
|
||||
if (IOU(sorted_boxes[i][0], sorted_boxes[j][0]) >= nmsThreshold) {
|
||||
boxes[sorted_boxes[j][1]].toDraw = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case "SSD": {
|
||||
const vecNum = result.matSize[2];
|
||||
const vecLength = 7;
|
||||
|
||||
for (let i = 0; i < vecNum; ++i) {
|
||||
let vector = resultData.slice(i*vecLength, (i+1)*vecLength);
|
||||
let confidence = vector[2];
|
||||
if (confidence > confThreshold) {
|
||||
let left, top, right, bottom, width, height;
|
||||
left = Math.round(vector[3]);
|
||||
top = Math.round(vector[4]);
|
||||
right = Math.round(vector[5]);
|
||||
bottom = Math.round(vector[6]);
|
||||
width = right - left + 1;
|
||||
height = bottom - top + 1;
|
||||
if (width <= 2 || height <= 2) {
|
||||
left = Math.round(vector[3] * outputWidth);
|
||||
top = Math.round(vector[4] * outputHeight);
|
||||
right = Math.round(vector[5] * outputWidth);
|
||||
bottom = Math.round(vector[6] * outputHeight);
|
||||
width = right - left + 1;
|
||||
height = bottom - top + 1;
|
||||
}
|
||||
let box = {
|
||||
classId: vector[1] - 1,
|
||||
confidence: confidence,
|
||||
bounding: [left, top, width, height],
|
||||
toDraw: true
|
||||
}
|
||||
boxes.push(box);
|
||||
}
|
||||
}
|
||||
} break;
|
||||
default:
|
||||
console.error(`Unsupported output type ${outType}`)
|
||||
}
|
||||
|
||||
// Draw the saved box into the image
|
||||
let image = cv.imread("canvasInput");
|
||||
let output = new cv.Mat(outputWidth, outputHeight, cv.CV_8UC3);
|
||||
cv.cvtColor(image, output, cv.COLOR_RGBA2RGB);
|
||||
let boxNum = boxes.length;
|
||||
for (let i = 0; i < boxNum; ++i) {
|
||||
if (boxes[i].toDraw) {
|
||||
drawBox(boxes[i]);
|
||||
}
|
||||
}
|
||||
|
||||
return output;
|
||||
|
||||
|
||||
// Calculate the IOU(Intersection over Union) of two boxes
|
||||
function IOU(box1, box2) {
|
||||
let bounding1 = box1.bounding;
|
||||
let bounding2 = box2.bounding;
|
||||
let s1 = bounding1[2] * bounding1[3];
|
||||
let s2 = bounding2[2] * bounding2[3];
|
||||
|
||||
let left1 = bounding1[0];
|
||||
let right1 = left1 + bounding1[2];
|
||||
let left2 = bounding2[0];
|
||||
let right2 = left2 + bounding2[2];
|
||||
let overlapW = calOverlap([left1, right1], [left2, right2]);
|
||||
|
||||
let top1 = bounding2[1];
|
||||
let bottom1 = top1 + bounding1[3];
|
||||
let top2 = bounding2[1];
|
||||
let bottom2 = top2 + bounding2[3];
|
||||
let overlapH = calOverlap([top1, bottom1], [top2, bottom2]);
|
||||
|
||||
let overlapS = overlapW * overlapH;
|
||||
return overlapS / (s1 + s2 + overlapS);
|
||||
}
|
||||
|
||||
// Calculate the overlap range of two vector
|
||||
function calOverlap(range1, range2) {
|
||||
let min1 = range1[0];
|
||||
let max1 = range1[1];
|
||||
let min2 = range2[0];
|
||||
let max2 = range2[1];
|
||||
|
||||
if (min2 > min1 && min2 < max1) {
|
||||
return max1 - min2;
|
||||
} else if (max2 > min1 && max2 < max1) {
|
||||
return max2 - min1;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
// Draw one predict box into the origin image
|
||||
function drawBox(box) {
|
||||
let bounding = box.bounding;
|
||||
let left = bounding[0];
|
||||
let top = bounding[1];
|
||||
let width = bounding[2];
|
||||
let height = bounding[3];
|
||||
|
||||
cv.rectangle(output, new cv.Point(left, top), new cv.Point(left + width, top + height),
|
||||
new cv.Scalar(0, 255, 0));
|
||||
cv.rectangle(output, new cv.Point(left, top), new cv.Point(left + width, top + 15),
|
||||
new cv.Scalar(255, 255, 255), cv.FILLED);
|
||||
let text = `${labels[box.classId]}: ${box.confidence.toFixed(4)}`;
|
||||
cv.putText(output, text, new cv.Point(left, top + 10), cv.FONT_HERSHEY_SIMPLEX, 0.3,
|
||||
new cv.Scalar(0, 0, 0));
|
||||
}
|
||||
}
|
||||
</script>
|
||||
|
||||
<script type="text/javascript">
|
||||
let jsonUrl = "js_object_detection_model_info.json";
|
||||
drawInfoTable(jsonUrl, 'appendix');
|
||||
|
||||
let utils = new Utils('errorMessage');
|
||||
utils.loadCode('codeSnippet', 'codeEditor');
|
||||
utils.loadCode('codeSnippet1', 'codeEditor1');
|
||||
|
||||
let loadLablesCode = 'loadLables = ' + loadLables.toString();
|
||||
document.getElementById('codeEditor2').value = loadLablesCode;
|
||||
let getBlobFromImageCode = 'getBlobFromImage = ' + getBlobFromImage.toString();
|
||||
document.getElementById('codeEditor3').value = getBlobFromImageCode;
|
||||
let loadModelCode = 'loadModel = ' + loadModel.toString();
|
||||
document.getElementById('codeEditor4').value = loadModelCode;
|
||||
|
||||
utils.loadCode('codeSnippet5', 'codeEditor5');
|
||||
|
||||
let canvas = document.getElementById('canvasInput');
|
||||
let ctx = canvas.getContext('2d');
|
||||
let img = new Image();
|
||||
img.crossOrigin = 'anonymous';
|
||||
img.src = 'lena.png';
|
||||
img.onload = function() {
|
||||
ctx.drawImage(img, 0, 0, canvas.width, canvas.height);
|
||||
};
|
||||
|
||||
let tryIt = document.getElementById('tryIt');
|
||||
tryIt.addEventListener('click', () => {
|
||||
initStatus();
|
||||
document.getElementById('status').innerHTML = 'Running function main()...';
|
||||
utils.executeCode('codeEditor');
|
||||
utils.executeCode('codeEditor1');
|
||||
if (modelPath === "") {
|
||||
document.getElementById('status').innerHTML = 'Runing failed.';
|
||||
utils.printError('Please upload model file by clicking the button first.');
|
||||
} else {
|
||||
setTimeout(main, 1);
|
||||
}
|
||||
});
|
||||
|
||||
let fileInput = document.getElementById('fileInput');
|
||||
fileInput.addEventListener('change', (e) => {
|
||||
initStatus();
|
||||
loadImageToCanvas(e, 'canvasInput');
|
||||
});
|
||||
|
||||
let configPath = "";
|
||||
let configFile = document.getElementById('configFile');
|
||||
configFile.addEventListener('change', async (e) => {
|
||||
initStatus();
|
||||
configPath = await loadModel(e);
|
||||
document.getElementById('status').innerHTML = `The config file '${configPath}' is created successfully.`;
|
||||
});
|
||||
|
||||
let modelPath = "";
|
||||
let modelFile = document.getElementById('modelFile');
|
||||
modelFile.addEventListener('change', async (e) => {
|
||||
initStatus();
|
||||
modelPath = await loadModel(e);
|
||||
document.getElementById('status').innerHTML = `The model file '${modelPath}' is created successfully.`;
|
||||
configPath = "";
|
||||
configFile.value = "";
|
||||
});
|
||||
|
||||
utils.loadOpenCv(() => {
|
||||
tryIt.removeAttribute('disabled');
|
||||
});
|
||||
|
||||
var main = async function() {};
|
||||
var postProcess = function(result, labels) {};
|
||||
|
||||
utils.executeCode('codeEditor1');
|
||||
utils.executeCode('codeEditor2');
|
||||
utils.executeCode('codeEditor3');
|
||||
utils.executeCode('codeEditor4');
|
||||
utils.executeCode('codeEditor5');
|
||||
|
||||
|
||||
function updateResult(output, time) {
|
||||
try{
|
||||
let canvasOutput = document.getElementById('canvasOutput');
|
||||
canvasOutput.style.visibility = "visible";
|
||||
cv.imshow('canvasOutput', output);
|
||||
document.getElementById('status').innerHTML = `<b>Model:</b> ${modelPath}<br>
|
||||
<b>Inference time:</b> ${time.toFixed(2)} ms`;
|
||||
} catch(e) {
|
||||
console.log(e);
|
||||
}
|
||||
}
|
||||
|
||||
function initStatus() {
|
||||
document.getElementById('status').innerHTML = '';
|
||||
document.getElementById('canvasOutput').style.visibility = "hidden";
|
||||
utils.clearError();
|
||||
}
|
||||
|
||||
</script>
|
||||
|
||||
</body>
|
||||
|
||||
</html>
|
||||
Reference in New Issue
Block a user